This work aims at completing the Wiener-Hopf analysis of a canonical problem referring to an extraordinary transverse electromagnetic wave propagating within a parallel plane waveguide loaded with magnetized plasma when incident normally at the truncated edge of its upper conductor. The complicated mathematical issues faced herein comes from the non-symmetric Kernel functions involved in the related integral equation. This property puts two challenging issues, first the rarely occurring factorization of non-symmetric Kernels and secondly the handling of unidirectional surface and leaky waves. Although the formulation of the Wiener-Hopf equations was carried out in our previous work, these two challenges were not confronted, since that work has been completed only in regard to the closed-shielded geometry which involves a symmetric Kernel. Thus, the novel contribution of this work refers to completing the analysis of the open geometry by handling the factorization of the related non-symmetric Kernel, evaluating the radiated field as well as studying the unidirectional waves for their near and far fields.
An eigenanalysis-based technique is presented for the study and design of large complicated closed cavities and particularly Reverberation Chambers, including conductor and dielectric material losses. Two different numerical approaches are exploited. First, a straightforward approach is adopted where the finite walls conductivity is incorporated into the Finite Element Method (FEM) formulation through the Leontovich Impedance boundary conditions. The resulting eigenproblem is linearized through an eigenvalue transformation and solved using the Arnoldi algorithm. To address the excessive computational requirements of this approach and to achieve a fine mesh ensuring convergence, a novel approach is adopted. Within this, a linear eigenvalue problem is formulated and solved assuming all metallic structures as perfect electric conductors (PEC). In turn, the resulting eigenfunctions are postprocessed within the Leontovich boundary condition for the calculation of the metals finite conductivity losses. Mode stirrer design guidelines are setup based on the eigenfunction characteristics. Both numerical eigenanalysis techniques are validated against an analytical solution for the empty cavity and a reverberation chamber simulated by a commercial FEM simulator. A series of classical mode stirrers are studied to verify the design guidelines, and an improved mode stirrer is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.