Peroxynitrite (ONOO-) is a major cytotoxic agent that has been implicated in a host of pathophysiological conditions; it is therefore important to develop therapeutic agents to detoxify this potent biological oxidant, and to understand the modes of action of these agents. Water-soluble iron porphyrins, such as 5,10,15,20-tetrakis(N-methyl-4‘-pyridyl)porphinatoiron(III) [Fe(III)TMPyP] and 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphinatoiron(III) [Fe(III)TMPS], have been shown to catalyze the efficient decomposition of ONOO- to NO3 - and NO2 - under physiological conditions. However, the mechanisms of ONOO- decomposition catalyzed by these water-soluble iron porphyrins have not yet been elucidated. We have shown that there are two different pathways operating in the catalytic decomposition of ONOO- by FeTMPyP. Fe(III)TMPyP reacts rapidly with ONOO- to produce oxoFe(IV)TMPyP and NO2 (k ≈ 5 × 107 M-1 s-1). The oxoFe(IV) porphyrin, which persisted throughout the catalytic decomposition of ONOO-, was shown to be relatively unreactive toward NO2 and NO2 -. This oxoFe(IV) porphyrin was also shown to react with ONOO- (k = 1.8 × 106 M-1 s-1), and it was this oxoFe(IV)-ONOO- reaction pathway that predominated under conditions of excess ONOO- with respect to Fe(III)TMPyP. The competition between the two pathways explains the highly nonlinear relationship observed for k cat with respect to ONOO- concentration. Fe(III)TMPyP is also known to catalyze the dismutation of the ONOO- precursor superoxide (O2 -•), and using stopped-flow spectrophotometry, the rate of Fe(III)TMPyP-catalyzed O2 -• dismutation has been determined to be 1.9 × 107 M-1 s-1 by direct measurement. A detailed mechanistic understanding of how iron porphyrins function in the catalytic decomposition of both ONOO- and O2 -• may prove essential in the exploration of the chemistry and biology of these reactive oxygen species, and in understanding the biological activity of these metalloporphyrins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.