The ability of differently substituted charged phenyl radicals (a class of distonic radical cations) to abstract an iodine atom from allyl iodide was systematically examined in the gas phase by using Fourier transform ion cyclotron resonance mass spectrometry. The reaction products and second-order reaction rate constants were determined for several radicals that differ by the type and/or number of substituents located in the ortho- and/or meta-position with respect to the radical site. All the radicals also carry a para-pyridinium group needed for mass spectrometric manipulation. These electron-deficient phenyl radicals react with allyl iodide by predominant iodine atom abstraction. The reaction is facilitated by the presence of neutral electron-withdrawing substituents, such as F, CF3, Cl, or CN. The extent of rate increase depends on the type and number of the substituents, as well as their location relative to the radical site. Based on molecular orbital calculations (PM3 and Becke3LYP/6-31G(d)+ZPVE), the indicated variations in the transition state energy are not related to enthalpic factors. Instead, the results are rationalized by polar effects arising from a variable contribution of a stabilizing charge transfer resonance structure to the transition state. A semiquantitative measure for the barrier-lowering effect of each substituent is provided by its influence on the electron affinity of the radical (the electron affinities were calculated by Becke3LYP/ 6-31+G(d) and AM1, which were found to produce similar values). Methyl substitution does not significantly affect the electron affinity, and accordingly, does not have a detectable effect on reactivity. Methyl groups located at ortho-positions are an exception, however. o-Methyl-substituted phenyl radicals undergo exothermic rearrangement to a benzyl radical in competition with iodine abstraction from allyl iodide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.