Studies of the kinetics of the proton- or hydrogen-transfer reactions concerning vitamin E in solutions and in
micellar dispersions by means of stopped-flow and absorption spectroscopy indicated that proton tunneling
plays an important role in the antioxidant and regeneration reactions that are advantageous in vivo but not as
a part of the harmful prooxidant action.
The models of vitamin K and vitamin E linked molecule, (1-(1,4-naphthoquinone-2-oxy)-6-(hydroxy-2,5,7,8-tetramethylchroman-2-carbonyloxy)-hexane), was synthesized as a model of vitamin K and vitamin E which coexist in biological membranes. The time-resolved EPR (TR-EPR) spectra of this molecule could be assigned to vitamin K and E radicals and showed that the excited triplet state of the vitamin K moiety was rapidly quenched by abstraction of hydrogen from the vitamin E moiety. The broad and emissive CIDEP spectra observed in ethanol suggested that the intramolecular interaction between vitamin K and vitamin E radicals was strong there. The relatively resolved spectra observed in a TX-100 micelle system, on the other hand, indicated that the interaction between these radicals was very weak. These results suggest that the vitamin K and E radicals existed around the water-oil interface of the micelle independently. The absence of a deuterium effect in our experiments showed that tunneling does not contribute significantly to the quenching reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.