Mets motifs, which refer to methionine-rich sequences found in the high-affinity copper transporter Ctr1, also appear in other proteins involved in copper trafficking and homeostasis, including other Ctrs as well as Pco and Cop proteins isolated from copper-resistant bacteria. To understand the coordination chemistry utilized by these proteins, we studied the copper binding properties of a peptide labeled Mets7-PcoC with the sequence Met-Thr-Gly-Met-Lys-Gly-Met-Ser. By comparing this sequence to a series of mutants containing noncoordinating norleucine in place of methionine, we confirm that all three methionine residues are involved in a thioether-only binding site that is selective for Cu(I). Two independent methods, one based on mass spectrometry and one based on rate differences for the copper-catalyzed oxidation of ascorbic acid, provide an effective K(D) of approximately 2.5 microM at pH 4.5 for the 1:1 complex of Mets7-PcoC with Cu(I). These results establish that a relatively simple peptide containing an MX(2)MX(2)M motif is sufficient to bind Cu(I) with an affinity that corresponds well with its proposed biological function of extracellular copper acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.