Nonlinear effect on optical properties of one-dimensional photonic crystal (1D-PC) of the type (HL) n (LH) m (LLHH) k was investigated. It is an asymmetric hybrid Fabry-Perot resonator type of 1DPC structure which is composed of linear (H layers) and nonlinear (L layers) materials. The linear and nonlinear transmission spectra are graphically illustrated using a numerical approach based on the Transfer Matrix Method (TMM). Results show the appearance of a Perfect Transmission Peak (PTP) in the photonic band gap which makes the structure constitute a monochromatic filter. By analyzing this PTP it is shown that the Full-Width at Half-Maximum (FWHM) depends not only on the number of symmetry layers of the studied 1D-PC but also on the refractive index of the nonlinear layers. The change of the refractive index (Kerr effect) causes a dynamically shift in the band gap including the resonance peak. As a result, such a structure has the potential to be used for designing optical filters and nonlinear optical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.