We have studied the equilibration dynamics of liquid water and alcohols following a local deposition of energy using time-resolved femtosecond mid-infrared pump-probe spectroscopy. The equilibration dynamics is monitored via the spectral response of the OH-stretch vibration. It is found that the equilibration leads to complicated changes of the absorption band of the OH-stretch vibration including a shift of the absorption band and a decrease of the absorption cross section. Interestingly, these spectral changes do not occur simultaneously, which indicates that they are associated with the equilibration dynamics of different lowfrequency modes. For water, we find an equilibration time constant of 0.55 ( 0.05 ps. We observe that the equilibration time strongly increases going from water to alcohols such as methanol, ethanol, and propanol which means that water molecules can adapt much faster to a local deposition of energy than other hydrogenbonding liquids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.