Nowadays inductive powering has become a widely spread technique in existing and emerging implanted medical devices (IMD). The geometry of coils couple plays a key role in the design, optimization and evaluation of a biomedical inductive powering unit (IPU). We have proposed a relatively fast method for an execution of these procedures, which is based on a mutual induction calculation using GPU parallel computing. Generally, our approach is to calculate mutual inductance as a function of uncontrolled (axial distance, lateral distance, inclination) and controlled (coils radii, turns numbers, distance between turns) geometric parameters of a coil couple. Calculated geometric functions in its turn are used in the design and optimization procedure to evaluate an IPU performance (e.g., load power). Achieved time gain of the GPU calculations in comparison with the host CPU computing is up to 80 for sequential summation and up to 8 for parallel computing. Also, it is shown that precision of our method is comparable to the precision of existing electromagnetic field solvers, and at the same time, computation time is substantially less (time gain is about 7 . . . 8 for 2D case and about 100 and higher for 3D case). Additionally, we have verified our method experimentally and shown that results of the calculations are accurate enough to predict real IPU performance. Finally, we have given an example of an IPU design optimization using geometric functions calculated with the help of the proposed method.
One of the main concerns for transcutaneous energy transfer via inductive coupling is misalignments of coils, especially in the case of mechanical circulatory support systems, when coils placed on a chest wall or an abdomen. We proposed a space-frequency approach to this problem. It is possible to find values of so called splitting frequency by expression which incorporate the value of coupling coefficient. Given that coupling coefficient depends on the system geometry, it allows one to determine the optimal operating frequency for the specified relative position of the coils. Numerical calculations of transcutaneous energy transfer parameters show the capability of the proposed method. It was found that the operation at splitting frequency provided more stable output with respect to changes in a system geometry. The output power of the proposed system changes for not more than 5% for a distance in a range of 5-25 mm. At the same time, the output power of the system which operates at fixed resonant frequency changes for about 40%. Similar results were obtained for lateral displacements in a range of 0-20 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.