A short synthetic approach toward a novel class of chiral nucleophilic catalysts, the dissymmetry of which stems from restricted rotation about an Ar-Ar bond, has been developed. The key steps of the synthesis include preparation of a nucleophilic 1-methyl-2-pyrrolino[3,2-c]pyridine core 16 by ortho-lithiation and creation of the biaryl axes via Suzuki cross-coupling reactions. Comparative HPLC studies of racemization for configurationally labile biaryls 31, 38, and 43 containing 1-methyl-2-pyrrolino[3,2-c]pyridine, 4-(dimethylamino)pyridine, and 4-(1-pyrrolidino)pyridine cores, respectively, have demonstrated that a pyrrolidino substituent ortho to the biaryl axis is optimal for slowing Ar-Ar rotation. Biaryls containing all three cores have been shown to retain DMAP-like catalytic activity in the acylation of a hindered alcohol. Biaryls 55 and 56, which are configurationally stable at ambient temperature, have also been prepared via modification of configurationally labile derivatives. Compounds 55 and 56 in optically pure form should provide a useful starting point for studies on catalytic asymmetric acyl transfer using atropisomeric analogues of DMAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.