Abstract-This paper develops a novel design method for synthesizing the multi-passband filter with high flexibility in various passband location and fractional bandwidth. Using the proposed compensation technology in the equivalent circuit of multi-passband resonator, the cutoff frequencies and matching property in passband regions can be improved. Triple-and quad-band bandpass filters operating in both wireless local area network (WLAN) 802.11 a/b/g and worldwide interoperability for microwave access (WiMAX) systems are presented to verify the design method. The lumped-element coplanar waveguide stub fabricated by the split-ring resonator is established to realize filter with compact size. All the measured, full-wave simulated and equivalent-circuit modeled results illustrate a good agreement among them, which validates the multi-passband design methodology and shows the advantages of DC elimination and deep rejection between each passband.
Abstract-This paper presents the analytical design formulas for the bandpass filters which are built on the asymmetrically coupled-line conductor-backed coplanar transmission lines (CBCTLs) in multilayer configuration. The full-wave simulation is employed to characterize the far-field patterns of space-wave and surface-wave radiations as well as the frequency-dependent conductor, dielectric, and radiation losses. Good agreement among the results of full-wave simulation, transmission-line model, and measurement justifies the design procedure and validates the analytical design formulas. By properly placing the dielectric materials in multilayer configuration, a bandpass filter for minimizing the radiated power loss and improving the stopband characteristic can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.