A modified polyol process has been used to synthesize intermetallic nanocrystals and nanowire networks directly in solution using a one-pot reaction. The synthesis of AuCu nanocrystals in tetraethylene glycol shows that atomically ordered intermetallic nanocrystals form above 250 °C, while atomically disordered alloy nanocrystals form at lower temperatures. The particle size increases with increasing solvent temperature, and there is a gradual shift from spherical to ellipsoidal morphology. Fully ordered intermetallic AuCu nanocrystals synthesized at 310 °C have an average particle width and height of 10 ( 3 and 8 ( 2 nm, respectively, and exist with faceted ellipsoidal, hexagonal, and cubic shapes. Replacing tetraethylene glycol with ethylene glycol, diethylene glycol, triethylene glycol, and glycerol yields highly branched nanowire networks. The morphology of the nanowire networks remains the same for all of the solvents, but the structure can be tuned from fully disordered alloy to fully ordered intermetallic AuCu, based on the boiling point of the solvent. The nanowire networks synthesized in ethylene glycol show that they likely form through a nanoparticle coalescence mechanism. By changing the stoichiometry of Au and Cu in solution, intermetallic AuCu 3 nanocrystals and nanowire networks can also be synthesized using tetraethylene glycol and glycerol, respectively. These results establish that it is possible to simultaneously control the structure, size, shape, and composition of intermetallic nanocrystals using solution chemistry, which has important implications for both fundamental scientific studies and future technological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.