This paper investigates three different approaches to patterning proteins within ultrathin resist layers formed from self-assembled monolayers using scanning probe lithography (SPL) at the submicrometer length scale. The first approach uses a “nanografting” method to pattern a reactive carboxylic acid terminated thiol into a resist composed of a methyl-terminated monolayer. Rabbit IgG antigen is bound to the patterned region, and an immunoassay utilizing direct readout of the topographic change resulting from specific binding of anti-rabbit IgG antibody is performed using scanning force microscopy. To address issues related to nonspecific protein adsorption, the other two approaches investigated the patterned removal of glycol-terminated monolayers by mechanically “scraping” patterns at high tip−sample forces by SPL. Protein attachment to the scraped regions was achieved either through the chemisorption of a disulfide coupling agent or by the direct adsorption of Fab‘-SH antibody fragments. Results obtained from all approaches are presented and compared, and the strengths and weaknesses of each toward fabricating high-density, multiple protein arrays are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.