The photochemical instability of CdSe nanocrystals coated by hydrophilic thiols was studied nondestructively and systematically in water. The results revealed that the photochemical instability of the nanocrystals actually included three distinguishable processes, namely the photocatalytic oxidation of the thiol ligands on the surface of nanocrystals, the photooxidation of the nanocrystals, and the precipitation of the nanocrystals. At first, the thiol ligands on the surface of a nanocrystal were gradually photocatalytically oxidized using the CdSe nanocrystal core as the photocatalyst. This photocatalytic oxidation process was observed as a zero-order reaction in terms of the concentration of the free thiols in the solution. The photogenerated holes in a nanocrystal were trapped onto the thiol ligands bound on the surface of the nanocrystal, which initiated the photooxidation of the ligands and protected the nanocrystal from any photooxidation. After nearly all of the thiol ligands on the surface of the nanocrystals were converted into disulfides, the system underwent several different pathways. If the disulfides were soluble in water, then all of the disulfides fell into the solution at the end of this initial process, and the nanocrystals precipitated out of the solution without much variation over their size and size distribution. When the disulfides were insoluble in water, they likely formed a micelle-like structure around the nanocrystal core and kept it soluble in the solution. In this case, the nanocrystals only precipitated after severe oxidation, which took a long period of time. If the system contained excess free thiol ligands, they replaced the photochemically generated disulfides and maintained the stability and solubility of the nanocrystals. The initiation stage of the photooxidation of CdSe nanocrystals themselves increased as the thickness and packing density of the ligand shell increased. This was explained by considering the ligand shell on the surface of a nanocrystal as the diffusion barrier of the oxygen species from the bulk solution into the interface between the nanocrystal and the surface ligands. Experimental results clearly indicated that the initiation stage of the photooxidation was not caused by the chemical oxidation of the system kept in air under dark conditions or the hydrolysis of the cadmium-thiol bonds on the surface of the nanocrystals, both of which were magnitudes slower than the photocatalytic oxidation of the surface ligands if they occurred at all. The results described in this contribution have already been applied for designing new types of thiol ligands which dramatically improved the photochemical stability of CdSe nanocrystals with a ligand shell that is as thin as approximately 1 nm.
The formation of nearly monodisperse CdTe nanocrystalsdots (either zinc blende or wurtzite crystal structure), rods, and tetrapodsin a noncoordinating solvent was studied. Several strong ligand effects were observed, and the ligand effects on the monomers were found to play a more important role than the ligand effects on the nanocrystals. Experimental results suggest that, instead of monomer concentrations, monomer activities is a more relevant term for understanding the formation of nanocrystals because strong ligands always exist in the reaction solutions. The bonding strength and the steric effects of ligands dramatically affect the reactivity of monomers and are considered as contributors to the activity coefficients of monomers. The overall optical properties of the as-prepared CdTe nanocrystals are better than those reported in the literature and comparable to the standard CdSe nanocrystal system. The configuration of the hydrocarbon chains of the ligands on the surface of each nanocrystal also plays a critical role in determining the stability of CdTe nanocrystals.
The surface ligands, generation-3 (G3) dendrons, on each semiconductor nanocrystal were globally cross-linked through ring-closing metathesis (RCM). The global cross-linking of the dendron ligands sealed each nanocrystal in a dendron box, which yielded box-nanocrystals. Although the dendron ligands coated CdSe nanocrystals (CdSe dendron-nanocrystals) were already quite stable, the stability of CdSe box-nanocrystals against chemical, photochemical, and thermal treatments were dramatically improved in comparison to that of the original dendron-nanocrystals. Furthermore, the box structure of the ligands monolayer coupled with the stable inorganic CdSe/CdS core/shell nanocrystals resulted in a class of extremely stable nanocrystal/ligands complexes. The band edge photoluminescence of the core/shell dendron-nanocrystals and box-nanocrystals were partially remained, and could be further brightened through controlled chemical oxidation or photooxidation. Practically, the stability of the box-nanocrystals is sufficient for most fundamental studies and technical applications. The box-nanocrystals may represent a general solution for the commonly encountered instability for many types of colloidal nanocrystals. The size distribution of the empty dendron boxes formed by the dissolution of the inorganic nanocrystals in concentrated HCl was very narrow. The empty boxes as new types of polymer capsules are soluble in solution, mesoporous, and with a very thin but stable peripheral. Those nanometer-sized cavities should be of interest for many purposes in the field of solution host-guest chemistry.
A dendron ligand with two carboxylate anchoring groups at its focal point and eight hydroxyl groups as its terminal groups was found to efficiently convert as-synthesized CdSe/CdS core-shell nanocrystals in toluene to water-soluble dendron-ligand stabilized nanocrystals (dendron nanocrystals). The resulting dendron nanocrystals retained 60% of the photoluminescence value of the original CdSe/CdS core-shell nanocrystals in toluene and were significantly brighter than the similar dendron nanocrystals with thiolate (deprotonated thiol group) as the anchoring group which retained just 10% of the photoluminescence value of the original CdSe/CdS core-shell nanocrystals in toluene. The carboxylate-based dendron nanocrystals survived UV irradiation in air for at least 13 days, about 9 times better than the thiolate-based dendron nanocrystals (35 h) and similar to that of the thiolate-based dendron-box stabilized CdSe/CdS core-shell nanocrystals (box nanocrystals). Upon UV irradiation, the dendron nanocrystals became even 2 times brighter than the original CdSe/CdS core-shell nanocrystals in toluene, and the UV-brightened PL can retain the brightness for at least several months. These stable and bright dendron nanocrystals were soluble in various aqueous media, including all common biological buffer solutions tested, for at least 1.5 years. In addition to their superior performance, the synthetic chemistry of carboxylate dendron ligands and the corresponding dendron nanocrystals is relatively simple and with high yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.