Abstract-An advanced aspheric and asymmetric large aperture dielectric lens antenna is proposed firstly here for high resolution at Wband frequency. Large aperture and aspheric lens provides minimum focusing error and high resolution in millimeter wave quasi-optics application. To the best of the authors' knowledge we design first time 500 mm large aperture lens for W-band quasi optics application. Near field radiation pattern, beam size and focal length of the lens are obtained theoretically and experimentally as well. Dielectric rod waveguide antenna is also designed and employed as a source antenna for the lens. The measured and simulated results of the DRW antenna also show very good performance at W-band frequency, and it has 15.3 dB gain with −22.5 dB sidelobe levels at 94 GHz.
In this paper, we present a wideband on-chip K-band RF front-end including a transmitter and receiver for vehicular FMCW radar applications using 0.18 µm CMOS process. To achieve wideband performance, an RC feedback circuit is applied to the input stage of amplifiers, as well as wideband passive circuits such as Marchand type baluns and Wilkinson type power dividers to the mixer LO port and transmitter output, respectively. The designed chip shows a 3-dB bandwidth of 6 GHz and 4.8 GHz for the receiver and transmitter, respectively. The receiver represents a gain of 18 dB and an inputreferred 1 dB compression point of −9 dBm at an RF frequency of 24.15 GHz and an IF frequency of 100 kHz. The transmitter shows a power gain of 8.9 dB and an output power of 6.8 dBm at a frequency of 24.15 GHz. The total chip has a size of 1500 µm × 1270 µm while consuming 71 mA with a supply voltage of 1.8 V. Further, the designed RF front-end chip has been verified by radar performance tests such as the Doppler shift and range information. The test result for range information shows good agreement with theoretical expectations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.