In this study, an artificial neural network (ANN) has been developed to predict the boundary layer flow of a single‐walled carbon nanotubes nanofluid toward three different nonlinear thin isothermal needles of paraboloid, cone, and cylinder shapes with convective boundary conditions. Different effects of particle diameter and solid–fluid interface coating have been taken into account in the thermal conductivity model of nanofluid in which ethylene glycol has been used as the base fluid. Single and dual phase approach is used to establish the management model under the phenomenon of zero heat and mass flux. A dataset has been developed for different scenarios of the fluid model by changing the relevant parameters with the Runge–Kutta based shooting technique. Two different ANN models have been developed to predict Nusselt number and skin friction coefficient (SFC) values. The values obtained from ANN models have been compared with the numerical data, which are the target values. In addition, mean square error and R values have also been examined in order to analyze the prediction performance of ANN models more comprehensively. The calculated R values for Nusselt number and SFC were obtained as 0.9999. The results obtained showed that ANN can predict Nusselt number and SFC values with high accuracy.
In this study, the effect of the amount of data used in the design of artificial neural networks (ANNs) on the predictive accuracy of ANNs was investigated. Five different ANNs were designed using the experimentally measured specific heat data of the Al 2 O 3 /water nanofluid prepared at volumetric concentrations of 0.0125, 0.025, 0.05, 0.1 and 0.2 using the Al 2 O 3 nanoparticle. The developed ANN is a multi-layer perceptron, feedforward and backpropagation model. In each ANN with 15 neurons in the hidden layer, the volumetric concentration (φ) and temperature (T) values were nominated as input layer factors and the specific heat value was estimated as the output value. With the aim of survey the effect of the amount of data on the predicted results of the ANN, a different amount of datasets were used in each developed ANN. In this context, in total 260 data were used in the Model 1 ANN. Subsequently, the total amount of data was reduced by 20% in each developed neural network and 55 data were used in the ANN named Model#5. The results obtained show that ANNs are highly talented of predicting the specific heat values of Al 2 O 3 /water nanofluid. However, in the comparisons, it was evaluated that the amount of data used had a share on the prediction performance of the ANN and that the decrease in the amount of data with the prediction performance of the ANN decreased.
In current investigation, a novel implementation of intelligent numerical computing solver based on multi-layer perceptron (MLP) feed-forward back-propagation artificial neural networks (ANN) with the Levenberg–Marquard algorithm is provided to interpret heat generation/absorption and radiation phenomenon in unsteady electrically conducting Williamson liquid flow along porous stretching surface. Heat phenomenon is investigated by taking convective boundary condition along with both velocity and thermal slip phenomena. The original nonlinear coupled PDEs representing the fluidic model are transformed to an analogous nonlinear ODEs system via incorporating appropriate transformations. A data set for proposed MLP-ANN is generated for various scenarios of fluidic model by variation of involved pertinent parameters via Galerkin weighted residual method (GWRM). In order to predict the (MLP) values, a multi-layer perceptron (MLP) artificial neural network (ANN) has been developed. There are 10 neurons in hidden layer of feed forward (FF) back propagation (BP) network model. The predictive performance of ANN model has been analyzed by comparing the results obtained from the ANN model using Levenberg-Marquard algorithm as the training algorithm with the target values. When the obtained Mean Square Error (MSE), Coefficient of Determination (R) and error rate values have been analyzed, it has been concluded that the ANN model can predict SFC and NN values with high accuracy. According to the findings of current analysis, ANN approach is accurate, effective and conveniently applicable for simulating the slip flow of Williamson fluid towards the stretching plate with heat generation/absorption. The obtained results showed that ANNs are an ideal tool that can be used to predict Skin Friction Coefficients and Nusselt Number values.
In cases when high velocity occurs, non-Darcy phenomena are essential for explaining fluid motion in porous media and have wide range of applications. The present study displays the magnetohydrodynamic (MHD) squeezing flow of fluid through a non-Darcian medium towards a stretched permeable surface. The heat and mass procedures are investigated using convective conditions and nonlinear stratification. The radiation and viscous dissipation phenomena are implemented to enhance the heat transfer. The nonlinear simplified equations are evaluated using a numerical Runge-Kutta fourth-order approach via the shooting process. To see the variation in the relevant fields, graphs of essential parameters have been provided. The Sherwood number, Nusselt number, and the skin friction coefficient were calculated numerically for various parameters and three different artificial neural networks (ANNs) were developed with the obtained data. The obtained results have shown that artificial neural networks can make predictions and optimizations with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.