Sorghum is an important staple food crop in drought prone areas of Sub-Saharan Africa, which is characterized by erratic rainfall with poor distribution. Sorghum is a drought-tolerant crop by nature with reasonable yield compared to other cereal crops, but such abiotic stress adversely affects the productivity. Some sorghum varieties maintain green functional leaves under post-anthesis drought stress referred to as stay-green, which makes it an important crop for food and nutritional security. Notwithstanding, it is difficult to maintain consistency of tolerance over time due to climate change, which is caused by human activities. Drought in sorghum is addressed by several approaches, for instance, breeding drought-tolerant sorghum using conventional and molecular technologies. The challenge with conventional methods is that they depend on phenotyping stay-green, which is complex in sorghum, as it is constituted by multiple genes and environmental effects. Marker assisted selection, which involves the use of DNA molecular markers to map QTL associated with stay-green, has been useful to supplement stay-green improvement in sorghum. It involves QTL mapping associated with the stay-green trait for introgression into the senescent sorghum varieties through marker-assisted backcrossing by comparing with phenotypic field data. Therefore, this review discusses mechanisms of drought tolerance in sorghum focusing on physiological, morphological, and biochemical traits. In addition, the review discusses the application of marker-assisted selection techniques, including marker-assisted backcrossing, QTL mapping, and QTL pyramiding for addressing post-flowering drought in sorghum.
Crop breeding for resilience to changing climates is a key area of investment in African agricultural development, but proactively breeding for uncertain future climates is challenging. In this paper, we characterise efforts to breed new varieties of crops for climate resilience in southern Africa and evaluate the extent to which climate model projections currently inform crop breeding activity. Based on a survey of seed system actors, we find that the prioritisation of crops and traits is only informed to a limited extent by modelled projections. We use an ensemble of CORDEX models for mid and end of century for southern Africa to test some of the assumptions that underpin current breeding activity, particularly associated with breeding for reduced durations and drought tolerance in maize, and demonstrate some of the ways in which such projections can help to inform breeding priorities and agenda setting (e.g. through the case of assessing cassava toxicity risk). Based on these examples, we propose five potential applications of climate models in informing breeding priorities. Furthermore, after unpacking the sources of uncertainty within the presented model projections, we discuss general principles for the appropriate use of climate model information in crop breeding.
Sorghum is a major staple food crop for the people in semi-arid areas of Africa and Asia. Post-flowering drought is a global constraint of sorghum production. The study aimed to improve stay-green (STG) characteristics of farmer-preferred sorghum varieties in Tanzania using marker-assisted backcrossing. A total of 752 individuals representing five BC2F1 populations and their parents were genotyped using previously reported KASP markers linked with STG 3A and STG 3B quantitative trait loci (QTL). In the BC2F1 populations, the maximum number of individuals with heterozygous alleles were observed in S35*Pato background (37) whereas only seven individuals derived from the B35*Wahi parents’ background contained heterozygous alleles. Of the 30 single nucleotide polymorphism (SNP) markers, favourable alleles were observed at 18 loci in BC2F1 populations. In the BC2F1 generation, the highest (0.127 kg/panicle) grain yield was observed in the B35*NACO Mtama 1 background population. The genotypic analysis revealed the presence of favourable alleles in homozygous conditions at markers loci associated with STG 3A and STG 3B QTLs in BC2F3 populations, suggesting successful introgression of STG QTLs from the donor parents to the recurrent parents. Across water irrigation regimes, the highest (0.068 kg/panicle) mean grain weight was observed in the genotype NA316C. Therefore, our study demonstrated the utility of marker-assisted backcrossing for drought tolerance improvement of locally adapted sorghum varieties in Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.