The aim of this study was to compare the effects of different silica grades on the structure and morphology of isotactic polypropylene (iPP)/silica composites to better understand their structure-property relationships. Isotactic polypropylene composites with 2, 4, 6, 8 vol % of added silica fillers differing in particle size (micro-vs. nanosilica) and surface modification (untreated vs. treated surface) were prepared by nonisothermal compression molding and characterized by different methods. The addition of all silica fillers grades to the iPP matrix significantly influenced the spherulitic morphology, while phase characteristics of the iPP matrix seemed to be unaffected. Surface modification of silica fillers exhibited stronger effects on spherulite size than size of silica particles. Nonpolar silica particles, more miscible or compatible with iPP chains than polar silica particles, enabled better spherulitic growth. The spherulite sizes tended to reach equal values at 8 vol % of added silicas showing that spherulite size became independent of filler concentration and surface modification above optimum filler concentration.
In this article, the influence of fumed silica nanofiller on the structure and properties of segmented polyurethane elastomer (PUR) was investigated. In order to investigate the interactions at the filler-matrix interface, nonmodified and commercially modified fillers (with methacrylsilane and octylsilane) were used. The PUR composites with 1.0, 2.0, 4.0, 6.0, and 9.0 vol % of all fillers were prepared by solution casting method. Surface free energy of the fillers and polymer matrix was determined using contact angle measurements with different testing liquids. Change in morphology was analyzed using optical polarization microscopy and distribution of the filler in polymer matrix using scanning electron microscopy. The influences of silica fillers on mechanical and thermal properties of PUR were investigated. Results showed that sur-face treatment of silica filler with methacrylsilane and octylsilane reduces the agglomeration of particles that improves dispersion at microlevel. Addition of all fillers disrupts spherulite morphology and decreases crystallinity of the PUR matrix. Nonmodified silica nanofiller has the least pronounced influence on spherulite morphology and the lowest influence on polyurethane crystallinity and thus the best mechanical properties. Surface modification of silica with octylsilane has less influence on polyurethane crystallinity and on decreasing of mechanical properties than modification with methacrylsilane. V C 2011 Wiley Periodicals, Inc. J Appl Polym Sci 125: E181-E190, 2012
A series of cationic oligomeric surfactants (quaternary dodecyldimethylammonium ions with two, three, or four chains connected by an ethylene spacer at the headgroup level, abbreviated as dimer, trimer, and tetramer) were synthesized and characterized. The influence of the degree of oligomerization on their polymorphic and mesomorphic properties was investigated by means of X-ray diffraction, polarizing optical microscopy, thermogravimetry, and differential scanning calorimetry. All compounds display layered arrangements with interdigitated dodecyl chains. The increase in the degree of oligomerization increases the interlayer distance and decreases the ordering in the solid phase; whereas the dimer sample is fully crystalline with well-developed 3D ordering and the trimer and tetramer crystallize as highly ordered crystal smectic phases. The number of thermal phase transitions and sequence of phases are markedly affected by the number of dodecyl chains. Anhydrous samples exhibit polymorphism and thermotropic mesomorphism of the smectic type, with the exception of the tetramer that displays only transitions at higher temperature associated with decomposition and melting. All hydrated compounds form lyotropic mesophases showing reversible phase transitions upon heating and cooling. The sequence of liquid-crystalline phases for the dimer, typical of concentrated ionic surfactant systems, comprises a hexagonal phase at lower temperatures and a smectic phase at higher temperatures. In contrast, the trimer and tetramer reveal textures of the hexagonal phase.
Phase transitions from a dispersed lamellar to hexagonal liquid crystalline phase have been investigated in a catanionic surfactant mixture formed by mixing a single tailed cationic surfactant, dodecylammonium chloride, with a double tailed anionic surfactant, sodium bis(2-ethylhexyl) sulfosuccinate. Depending on the bulk composition and total surfactant concentration, mixed micelles, vesicles, lamellar and hexagonal columnar liquid crystalline phases have been identified. Differences in the geometry of the two hydrophobic chains stabilize vesicles of different shapes (spherical, tubular and pearled) relative to the liquid crystalline phase even in stoichiometric mixtures. At higher surfactant concentrations the phase transition from a dispersed lamellar to hexagonal columnar liquid crystalline phase proceeds continuously, with both phases coexisting over a range of concentrations. The transition proceeds through processes of vesicle aggregation, reorganization into multilayer sheets rolled-up into tubules, and formation of a hexagonal columnar liquid crystalline phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.