Biomass burning (BB) is a significant air pollution source, with global, regional and local impacts on air quality, public health and climate. Worldwide an extensive range of studies has been conducted on almost all the aspects of BB, including its specific types, on quantification of emissions and on assessing its various impacts. China is one of the countries where the significance of BB has been recognized, and a lot of research efforts devoted to investigate it, however, so far no systematic reviews were conducted to synthesize the information which has been emerging. Therefore the aim of this work was to comprehensively review most of the studies published on this topic in China, including literature concerning field measurements, laboratory studies and the impacts of BB indoors and outdoors in China. In addition, this review provides insights into the role of wildfire and anthropogenic BB on air quality and health globally. Further, we attempted to provide a basis for formulation of policies and regulations by policy makers in China.
Savanna fires contribute significantly to global aerosol loading and hence to the Earth's radiative budget. Modeling of the climatic impact of these aerosols is made difficult due to a lack of knowledge of their size distribution. Australia is the third largest source of global carbon emissions from biomass burning, with emissions dominated by tropical savanna fires. Despite this, only a few previous studies have reported emission factors of trace gases from this important ecosystem and there are no previous published emission factors for the aerosol properties reported here for Australian savanna fires. In June 2014, the SAFIRED campaign (Savanna Fires in the Early Dry season) took place in the Northern Territory of Australia, with the purpose of investigating emissions and aging of aerosols from Australian savanna fires. This paper presents observed enhancement ratios and inferred emission factors of trace gases (CO2, CO, CH4, N2O, and gaseous elemental mercury), particles over different size modes (Aitken and accumulation), and speciated aerosols components (organics, sulfate, nitrate, ammonium, and chloride). Nine smoke events were identified from the data using large enhancements in CO and/or aerosol data to indicate biomass burning event. The results reported in this paper include the first emission factors for Aitken and accumulation mode aerosols from savanna fires, providing useful size information to enable better modeling of the climatic impact of this important source of global aerosols.
Oxidative potential (OP) is related to the organic phase, specifically to its oxygenated organic fraction (OOA). Furthermore, the oxygen content of fuel molecules has significant influence on particulate OP. Thus, this study aimed to explore the actual dependency of the OOA and ROS to the oxygen content of the fuel. In order to reach the goal, different biodiesels blends, with various ranges of oxygen content; have been employed. The compact time of flight aerosol mass spectrometer (c-ToF AMS) enabled better identification of OOA. ROS monitored by using two assays: DTT and BPEA-nit. Despite emitting lower mass, both assays agreed that oxygen content of a biodiesel is directly correlated with its OOA, and highly related to its OP. Hence, the more oxygen included in the considered biodiesels, the higher the OP of PM emissions. This highlights the importance of taking oxygen content into account while assessing emissions from new fuel types, which is relevant from a health effects standpoint.
<p><strong>Abstract.</strong> The SAFIRED (Savannah Fires in the Early Dry Season) campaign took place from 29th of May, 2014 until the 30th June, 2014 at the Australian Tropical Atmospheric Research Station (ATARS) in the Northern Territory, Australia. The purpose of this campaign was to investigate emissions from fires in the early dry season in northern Australia. Measurements were made of biomass burning aerosols, volatile organic compounds, polycyclic aromatic carbons, greenhouse gases, radon, mercury cycle, and trace metals. Aspects of the biomass burning aerosol emissions investigated included; emission factors of various emitted species, physical and chemical aerosol properties, aerosol aging, micronutrient supply to the ocean, nucleation, and aerosol water uptake. Over the course of the month-long campaign, biomass burning signals were prevalent and emissions from several large single burning events were observed at ATARS.<br><br> Biomass burning emissions dominated the gas and aerosol concentrations in this region. Nine major biomass burning events were identified and associated with intense or close individual smoke plumes. Dry season fires are extremely frequent and widespread across the northern region of Australia, which suggests that the measured aerosol and gaseous emissions at ATARS are likely representative of signals across the entire region of north Australia. Air mass forward trajectories show that these biomass burning emissions are carried north west over the Timor Sea and could influence the atmosphere over Indonesia and the tropical atmosphere over the Indian Ocean.<br><br> The outcomes of this campaign will be numerous. This region is an environment with little human impact and provides a unique look into the characteristics of biomass burning aerosol without the influence of other significant emission sources. Relationships between the aerosol physical and chemical properties, gas concentrations and meteorological data for the entire month will provide fundamental knowledge required to understand the influence of early dry season burning in this tropical region on the atmosphere. In this paper we present characteristics of the biomass burning observed at the sampling site and provide an overview of the more specific outcomes of the SAFIRED campaign.</p>
Abstract. The SAFIRED (Savannah Fires in the Early Dry Season) campaign took place from 29 May until 30 June 2014 at the Australian Tropical Atmospheric Research Station (ATARS) in the Northern Territory, Australia. The purpose of this campaign was to investigate emissions from fires in the early dry season in northern Australia. Measurements were made of biomass burning aerosols, volatile organic compounds, polycyclic aromatic carbons, greenhouse gases, radon, speciated atmospheric mercury and trace metals. Aspects of the biomass burning aerosol emissions investigated included; emission factors of various species, physical and chemical aerosol properties, aerosol aging, micronutrient supply to the ocean, nucleation, and aerosol water uptake. Over the course of the month-long campaign, biomass burning signals were prevalent and emissions from several large single burning events were observed at ATARS.Biomass burning emissions dominated the gas and aerosol concentrations in this region. Dry season fires are extremely frequent and widespread across the northern region of Australia, which suggests that the measured aerosol and gaseous emissions at ATARS are likely representative of signals across the entire region of north Australia. Air mass forward trajectories show that these biomass burning emissions are carried north-west over the Timor Sea and could influence the atmosphere over Indonesia and the tropical atmosphere over the Indian Ocean. Here we present characteristics of the biomass burning observed at the sampling site and provide an overview of the more specific outcomes of the SAFIRED campaign.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.