This study provides morphological, ultrastructural and phylogenetic characterization of 2 novel species of the order Haplosporida (Haplosporidium echinogammari n. sp. and H. orchestiae n. sp.) infecting amphipods of the genera Echinogammarus and Orchestia collected in southwestern England. Both parasites infect the connective tissues associated with the digestive gland and the tegument, and eventually infect other organs causing disruption of host tissues with associated motor impairment and fitness reduction. Prevalence of infection varied with host species, provenance and season, being as high as 75% for individuals of E. marinus infected with H. echinogammari in June (n = 50). Although no spores were found in any of the infected amphipods examined (n = 82), the morphology of monokaryotic and dikaryotic unicellular stages of the parasites enabled differentiation between the 2 new species. Phylogenetic analysis of the new species based on the small subunit (SSU) rDNA gene placed H. echinogammari close to H. diporeiae in haplosporidian lineage C, and H. orchestiae in a novel branch within Haplosporidium. An additional 25 new haplosporidian SSU rDNA sequences were generated from crab, isopod, and crayfish samples, significantly increasing the number of crustacean-derived sequences within Haplosporida, which was previously thought to comprise mostly parasites of molluscs. Phylogenetic analysis of these new sequences revealed 3 clades of primarily crustacean-derived sequences within Haplosporida.
This study provides a morphological, ultrastructural, and phylogenetic characterization of a novel micro‐eukaryotic parasite (2.3–2.6 µm) infecting amphipod genera Echinogammarus and Orchestia. Longitudinal studies across two years revealed that infection prevalence peaked in late April and May, reaching 64% in Echinogammarus sp. and 15% in Orchestia sp., but was seldom detected during the rest of the year. The parasite infected predominantly hemolymph, connective tissue, tegument, and gonad, although hepatopancreas and nervous tissue were affected in heavier infections, eliciting melanization and granuloma formation. Cell division occurred inside walled parasitic cysts, often within host hemocytes, resulting in hemolymph congestion. Small subunit (18S) rRNA gene phylogenies including related environmental sequences placed the novel parasite as a highly divergent lineage within Class Filasterea, which together with Choanoflagellatea represent the closest protistan relatives of Metazoa. We describe the new parasite as Txikispora philomaios n. sp. n. g., the first confirmed parasitic filasterean lineage, which otherwise comprises four free‐living flagellates and a rarely observed endosymbiont of snails. Lineage‐specific PCR probing of other hosts and surrounding environments only detected T. philomaios in the platyhelminth Procerodes sp. We expand the known diversity of Filasterea by targeted searches of metagenomic datasets, resulting in 13 previously unknown lineages from environmental samples.
The edible mussel Mytilus edulis is a major aquaculture commodity in Europe, with 168 000 t produced in 2015. A number of abundant, well characterised parasites of the species are known, though none are considered to cause significant mortality. Haplosporida (Rhizaria, Endomyxa) is an order of protistan parasites of aquatic invertebrates, the best studied of which are the oyster pathogens Haplosporidium nelsoni and Bonamia ostreae. While these species are well characterised within their hosts, the diversity, life-cycle and modes of transmission of haplosporidians are very poorly understood. Haplosporidian parasites have previously been reported from Mytilus spp., however the majority of these remain uncharacterised, and no molecular data exist for any species. In this study, we identified 2 novel haplosporidian parasites of M. edulis present in the UK. The first of these, observed by light microscopy and in situ hybridisation infecting the gills, mantle, gonadal tubules and digestive connective tissues of mussels in the Tamar estuary, England, we describe as Minchinia mytili on the basis of 18S sequence data. The second, observed infecting a single archive specimen collected in Loch Spelve, Mull, Scotland, infects the foot muscle, gills and connective tissue of the digestive gland. Sequence data places this parasite in an uncharacterised clade of sequences amplified from tropical bivalve guts and water samples, sister to H. nelsoni. Screening of water and sediment samples collected at the sample site in the Tamar estuary revealed the presence of both sequence types in the water column, suggesting host-free or planktonic life stages.
This study provides a morphological, ultrastructural, and phylogenetic characterization of a novel micro-eukaryotic parasite (2.3-2.6 µm) infecting genera Echinogammarus and Orchestia. Longitudinal studies across two years revealed that infection prevalence peaked in late April and May, reaching 64% in Echinogammarus sp. and 15% in Orchestia sp., but was seldom detected during the rest of the year. The parasite infected predominantly haemolymph, connective tissue, tegument, and gonad, although hepatopancreas and nervous tissue were affected in heavier infections, eliciting melanization and granuloma formation. Cell division occurred inside walled parasitic cysts, often within host haemocytes, resulting in haemolymph congestion. Small subunit (18S) rRNA gene phylogenies including related environmental sequences placed the novel parasite as a highly divergent lineage within Class Filasterea, which together with Choanoflagellatea represent the closest protistan relatives of Metazoa. We describe the new parasite as Txikispora philomaios n. sp. n. g., the first confirmed parasitic filasterean lineage, which otherwise comprises four free-living flagellates and a rarely observed endosymbiont of snails. Lineage-specific PCR probing of other hosts and surrounding environments only detected T. philomaios in the platyhelminth Procerodes sp. We expand the known diversity of Filasterea by targeted searches of metagenomic datasets, resulting in 13 previously unknown lineages from environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.