Joint impedance plays an important role in postural control and movement. However, current experimental knowledge on lower limb impedance during gait is limited to the ankle joint. We designed the LOwer limb PERturbator (LOPER) aimed to assess knee and hip joint impedance during gait. The LOPER applies force perturbations with a 39 Hz bandwidth, tested on a free-hanging leg. In minimal impedance mode, peak interaction forces during walking are low (<5 N). Also, this mode has a negligible effect on the gait pattern, as it is smaller than the within-subject variability during normal walking. In short, the LOPER is a transparent device able to elicit a clear response at both hip and knee joints to investigate lower limb dynamics. A second motor added to the LOPER could improve isolation of the perturbation contribution to knee and hip dynamics. People with neurological disorders can benefit from knowledge of joint impedance during gait through improved biomimetic devices and clinical decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.