We demonstrate a novel dynamic BOTDA sensor based, for the first time to our knowledge, on the use of the Brillouin phase-shift in addition to the conventional Brillouin gain. This provides the advantage of measurements that are largely immune to variations in fiber attenuation or changes in pump pulse power. Furthermore, the optical detection deployed leads to an enhanced precision or measurement time and to the broadening of the measurement range. Proof-of-concept experiments demonstrate 1.66-kHz measurement rate with 1-m resolution over a 160 m sensing fiber length. Moreover, a measurement range of 2560 µε with a precision of 20 µε is successfully proved.
In this paper we present a Brillouin optical time domain analysis (BOTDA) sensor that takes advantage of the enhanced characteristics obtained employing self-heterodyne optical detection combined with synchronous demodulation. By employing this technique we increase the sensitivity of the sensor and demonstrate experimentally a 12.35-dB enhancement in the SNR compared to conventional direct-detection systems. This detection scheme also enables distributed measurements of the Brillouin phase-shift in an optical fiber, which can lead to enhanced BOTDA schemes.
We introduce a novel configuration for long-range Brillouin optical time domain analysis (BOTDA) sensors that is based on shaping the pump pulses in the radio frequency instead of the optical domain. This results in a simplified setup that uses just one standard intensity modulator to generate pulses with an extremely high extinction ratio (60 dB in our experiments). We develop a theoretical model for Brillouin interaction in long-distance BOTDA and use simulations to demonstrate that the availability of such pure pulses completely suppresses measurement errors caused by pulse leakage. Finally, experimental results are shown to confirm theoretical predictions. A 25 km fibre is measured with our system and the results compared to those obtained using pump pulses with lower extinction ratios.
This is the accepted version of the paper.This version of the publication may differ from the final published version. Abstract-In many applications in industry, securely attaching fiber optic sensors to metallic structures is important for optimum monitoring, overcoming the limitations of glues and adhesives which are known to degrade under certain circumstances. To avoid that problem, creating a metallic bond to attach the sensors securely to the metal surface is important. Commercial fiber optics with metal coatings can be used but it is important not to damage the sensor itself which is written in the thin optical fiber. In this work, an alternative laser cladding technology has been studied for embedding metal coated fiber optics into which Fiber Bragg Grating (FBG) sensors have been written. A three-step strategy was selected for embedding the metal coating fibers to create the best conditions to allow high quality measurements to be made. This has been seen to allow good control of the embedding process to be achieved and to minimize the thermal and mechanical stress generated. The research undetaken has shown that it is possible to embed Cu and Ni coated fiber optics containing sensors to over 300µm with low losses, of between 0-1.5 dB (or 0-30%) and yet still enable satisfactory strain and temperature measurement results to be obtained. The research has shown that both Ni and Cu coated FBG-based fiber optic sensors could be embedded successfully and shown to give good mechanical and thermal response to similar non-embedded sensors and give excellent crosscomparison with the conventional gauge used for calibration. The results are therefore particularly encouraging for the use of sensors of this type when incorporated to create metallic 'smart structures' achieving durability of the sensors through the use of this innovative technique. Permanent repository link
We propose a novel concept for hybrid networks that combine point and distributed Brillouin sensors in a cost-effective architecture that also deploys remote distributed Raman amplification to extend the sensing range. A 46-km proof-of-concept network is experimentally demonstrated integrating point vibration sensors based on fiber Bragg gratings and tapers with distributed temperature sensing along the network bus. In this network the use of Raman amplification to compensate branching and fiber losses provides a temperature resolution of 0.7 degrees C and 13 m. Moreover, it was possible to obtain good optical signal to noise ratio in the measurements from the four point vibration sensors that were remotely multiplexed in the network. These low-cost intensity sensors are able to measure vibrations in the 0.1 to 50 Hz frequency range, which are important in the monitoring of large infrastructures such as pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.