Aim Critical illness myopathy (CIM) represents a common consequence of modern intensive care, negatively impacting patient health and significantly increasing health care costs; however, there is no treatment available apart from symptomatic and supportive interventions. The chaperone co‐inducer BGP‐15 has previously been shown to have a positive effect on the diaphragm in rats exposed to the intensive care unit (ICU) condition. In this study, we aim to explore the effects of BGP‐15 on a limb muscle (soleus muscle) in response to the ICU condition. Methods Sprague‐Dawley rats were subjected to the ICU condition for 5, 8 and 10 days and compared with untreated sham‐operated controls. Results BGP‐15 significantly improved soleus muscle fibre force after 5 days exposure to the ICU condition. This improvement was associated with the protection of myosin from post‐translational myosin modifications, improved mitochondrial structure/biogenesis and reduced the expression of MuRF1 and Fbxo31 E3 ligases. At longer durations (8 and 10 days), BGP‐15 had no protective effect when the hallmark of CIM had become manifest, that is, preferential loss of myosin. Unrelated to the effects on skeletal muscle, BGP‐15 had a strong positive effect on survival compared with untreated animals. Conclusions BGP‐15 treatment improved soleus muscle fibre and motor protein function after 5 days exposure to the ICU condition, but not at longer durations (8 and 10 days) when the preferential loss of myosin was manifest. Thus, long‐term CIM interventions targeting limb muscle fibre/myosin force generation capacity need to consider both the post‐translational modifications and the loss of myosin.
Background Critical illness myopathy (CIM) is a debilitating condition characterized by the preferential loss of the motor protein myosin. CIM is a by-product of critical care, attributed to impaired recovery, long-term complications, and mortality. CIM pathophysiology is complex, heterogeneous and remains incompletely understood; however, loss of mechanical stimuli contributes to critical illness-associated muscle atrophy and weakness. Passive mechanical loading and electrical stimulation (ES) therapies augment muscle mass and function. While having beneficial outcomes, the mechanistic underpinning of these therapies is less known. Therefore, here we aimed to assess the mechanism by which chronic supramaximal ES ameliorates CIM in a unique experimental rat model of critical care. Methods Rats were subjected to 8 days of critical care conditions entailing deep sedation, controlled mechanical ventilation, and immobilization with and without direct soleus ES. Muscle size and function were assessed at the single cell level. RNAseq and western blotting were employed to understand the mechanisms driving ES muscle outcomes in CIM. Results Following 8 days of controlled mechanical ventilation and immobilization, soleus muscle mass, myosin : actin ratio, and single muscle fibre maximum force normalized to cross-sectional area (CSA; specific force) were reduced by 40-50% (P < 0.0001). ES significantly reduced the loss of soleus muscle fibre CSA and myosin : actin ratio by approximately 30% (P < 0.05) yet failed to effect specific force. RNAseq pathway analysis revealed downregulation of insulin signalling in the soleus muscle following critical care, and GLUT4 trafficking was reduced by 55% leading to an 85% reduction of muscle glycogen content (P < 0.01). ES promoted phosphofructokinase and insulin signalling pathways to control levels (P < 0.05), consistent with the maintenance of GLUT4 translocation and glycogen levels. AMPK, but not AKT, signalling pathway was stimulated following ES, where the downstream target TBC1D4 increased 3 logFC (P = 0.029) and AMPK-specific P-TBC1D4 levels were increased approximately two-fold (P = 0.06). Reduction of muscle protein degradation rather than increased synthesis promoted soleus CSA, as ES reduced E3 ubiquitin proteins, Atrogin-1 (P = 0.006) and MuRF1 (P = 0.08) by approximately 50%, downstream of AMPK-FoxO3. Conclusions ES maintained GLUT4 translocation through increased AMPK-TBC1D4 signalling leading to improved muscle glucose homeostasis. Soleus CSA and myosin content was promoted through reduced protein degradation via AMPK-FoxO3 E3 ligases, Atrogin-1 and MuRF1. These results demonstrate chronic supramaximal ES reduces critical care associated muscle wasting, preserved glucose signalling, and reduced muscle protein degradation in CIM.
BackgroundCritical illness myopathy (CIM) is a debilitating condition characterized by the preferential loss of the motor protein myosin. CIM is a byproduct of critical care, attributed to impaired recovery, long-term complications, and mortality. CIM pathophysiology is complex, heterogeneous and remains incompletely understood, however loss of mechanical stimuli contributes to critical illness associated muscle atrophy and weakness. Passive mechanical loading (ML) and electrical stimulation (ES) therapies augment muscle mass and function. While having beneficial outcomes, the mechanistic underpinning of these therapies is less known. Therefore, here we aimed to assess the mechanism by which chronic supramaximal ES ameliorates CIM in a unique experimental rat model of critical care.MethodsRats were subjected to 8 days critical care conditions entailing deep sedation, controlled mechanical ventilation, and immobilization with and without direct soleus ES. Muscle size and function were assessed at the single cell level. RNAseq and Western blotting were employed to understand the mechanisms driving ES muscle outcomes in CIM.ResultsFollowing 8 days of controlled mechanical ventilation and immobilization, soleus muscle mass, Myosin:Actin ratio and single muscle fiber maximum force normalized to cross-sectional area (specific force) were reduced by 40-50% (p< 0.0001). ES significantly reduced the loss of soleus muscle fiber cross-sectional area (CSA) and Myosin:Actin ratio by approximately 30% (p< 0.05) yet failed to effect specific force. RNAseq pathway analysis revealed downregulation of insulin signaling in the soleus muscle following critical care and GLUT4 trafficking was reduced by 55% leading to an 85% reduction of muscle glycogen content (p< 0.01). ES promoted phosphofructokinase and insulin signaling pathways to control levels (p< 0.05), consistent with the maintenance of GLUT4 translocation and glycogen levels. AMPK, but not AKT, signaling pathway was stimulated following ES, where the downstream target TBC1D4 increased 3 logFC (p= 0.029) and AMPK-specific P-TBC1D4 levels were increased approximately 2-fold (p= 0.06). Reduction of muscle protein degradation rather than protein synthesis promoted soleus CSA, as ES reduced E3 ubiquitin proteins, Atrogin-1 (p= 0.006) and MuRF1 (p= 0.08) by approximately 50%, downstream of AMPK-FoxO3.ConclusionsES maintained GLUT4 translocation through increased AMPK-TBC1D4 signaling leading to improved muscle glucose homeostasis. Soleus CSA and myosin content was promoted through reduced protein degradation via AMPK-FoxO3 E3 ligases, Atrogin-1 and MuRF1. These results demonstrate chronic supramaximal ES reduces critical care associated muscle wasting, preserved glucose signaling and reduced muscle protein degradation in CIM.
Critical illness myopathy (CIM) is a debilitating condition characterized by the preferential loss of the motor protein myosin. CIM is a consequence of critical care, impairs recovery and provides long‐term complications, and mortality. CIM pathophysiology is complex and remains incompletely understood, however loss of mechanical stimuli appears central to critical illness associated muscle atrophy and weakness. Passive mechanical loading (ML) and electrical stimulation (ES) augment muscle mass and function, however the mechanisms underpinning these therapies are less known. Here we aimed to assess the hypothesis that chronic supramaximal ES would ameliorate CIM in a unique experimental rat model of critical care. Rats were subjected to deep sedation, controlled mechanical ventilation, and immobilization with and without direct soleus ES for 8 days. Critical care reduced soleus muscle mass, cross‐sectional area (CSA), Myosin: Actin ratio and single muscle fibre specific force. ES reduced the loss of soleus muscle fibre CSA and Myosin: Actin ratio yet failed to effect specific force. Insulin signalling gene pathway was downregulated following critical care and GLUT4 trafficking was reduced leading to muscle glycogen depletion. ES promoted phosphofructokinase and insulin signalling pathways and maintained GLUT4 translocation and glycogen levels. ES evoked AMPK, but not AKT, signalling pathway, where the downstream target TBC1D4 and AMPK‐specific P‐TBC1D4 levels tended to be increased. Reduced muscle protein degradation promoted soleus CSA, as ES reduced E3 ligases Atrogin‐1 and MuRF1 downstream of AMPK‐FoxO3. These results demonstrate chronic supramaximal ES reduces critical care associated muscle wasting, preserved glucose signalling and reduced muscle protein degradation in CIM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.