Introduction
The ever-changing market of new psychoactive substances (NPS) poses challenges for laboratories worldwide. Analytical toxicologists are constantly working to keep high-resolution mass spectrometry (HR-MS) screening libraries updated for NPS. This study sought to use the online crowd-sourced HighResNPS database for spectrum comparison screening, thereby broadening its utility to all HR-MS instruments.
Method
HighResNPS allows formation of a set of consensus fragment ions for a NPS and prioritises among multiple entries of collision-induced fragment ions. A subset of 42 NPS samples was analysed in data-independent acquisition (DIA) and data-dependent acquisition (DDA) modes on two different instruments. HighResNPS-computed spectra were generated with either Absolute (all fragment ions set to 100%) or Fractional (50% intensity reduction of former fragment ion) intensity. The acquired NPS data were analysed using the consensus library with computed ion intensities and evaluated with vendor-neutral screening software.
Results
Overall, of the 42 samples, 100% were identified, with 88% identified as the top candidate. Three samples had the correct candidate proposed as the second highest ranking NPS. In all three of those samples, the top proposed candidate was a positional isomer or closely related compound. Absolute intensity assignment provided identical scoring between the top two proposed compounds in two samples with DIA. DDA had a slightly higher identification rate in the spectra comparison screening with fractional intensity assignment, but no major differences were observed.
Conclusion
The fractional intensity assignment was slightly more advantageous than the absolute assignment. It was selective between proposed candidates, showed a high identification rate and had an overall higher fragmentation scoring. The candidates proposed by the HighResNPS library spectra comparison simplify the determination of NPS for researchers and toxicologists. The database provides free monthly updates of consensus spectra, thereby enabling laboratories to stay at the forefront of NPS screening by LC-HR-MS with spectra screening software.
The new psychoactive substance (NPS) 3‐HO‐PCP, a phencyclidine (PCP) analog, was detected in a law enforcement seizure and in forensic samples in Denmark. Compared with PCP, 3‐HO‐PCP is known to be a more potent dissociative NPS, but no toxicokinetic investigations of 3‐HO‐PCP are yet available. Therefore, 3‐HO‐PCP was quantified in in vivo samples, and the following were investigated: plasma protein binding, in vitro and in vivo metabolites, and metabolic targets. All samples were separated by liquid chromatography and analyzed by mass spectrometry. The unbound fraction in plasma was determined as 0.72 ± 0.09. After in vitro incubation with pooled human hepatocytes, four metabolites were identified: a piperidine‐hydroxyl‐and piperidine ring opened N‐dealkyl‐COOH metabolite, and O‐glucuronidated‐ and O‐sulfate‐conjugated metabolites. In vivo, depending on the sample and sample preparation, fewer metabolites were detected, as the O‐sulfate‐conjugated metabolite was not detected. The N‐dealkylated‐COOH metabolite was the main metabolite in the deconjugated urine sample. in vivo analytical targets in blood and brain samples were 3‐HO‐PCP and the O‐glucuronidated metabolite, with 3‐HO‐PCP having the highest relative signal intensity. The drug levels of 3‐HO‐PCP quantified in blood were 0.013 and 0.095 mg/kg in a living and a deceased subject, respectively. The 3‐HO‐PCP concentrations in deconjugated urine in a sample from a living subject and in post‐mortem brain were 7.8 and 0.16 mg/kg, respectively. The post mortem results showed a 1.5‐fold higher concentration of 3‐HO‐PCP in the brain tissue than in the post mortem blood sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.