The bubbly two-phase flow and electric current density distribution along a single, vertical, gas-evolving electrode are modelled and the results of a boundary layer analysis are presented. Existing empirical models for particle transport in sheared and sedimenting suspensions are adopted for the bubble mixture to close the two-phase model. Ionic species concentrations are shown to be essentially homogeneous as the mixing effect of the bubble suspension usually is much larger than dispersion by molecular diffusion even at laminar flow conditions. The non-uniformity of the bubble distribution along the electrode results in a non-uniform current density distribution, which agrees well with existing experimental findings in the literature.
A gas-evolving electrochemical cell with natural convection due to buoyancy is modeled using a
hydrodynamic two-phase mixture model. Physical parameters are taken from the chlorate
process, where hydrogen is evolved at the cathode. Constitutive closure laws, based on empirical
relations developed for sedimenting particles, give the motion of the monodisperse gas phase
relative to the mixture. Typical results display the effect of bubble size, channel width, and
current density on the buoyant flow rate of the electrolyte through the channel. Results from
the numerical simulations are also compared to data measured by Boissonneau and Byrne on
a cell with gas evolution on both the anode and the cathode. Qualitatively good agreement was
found.
The flow pattern in the grooves plays a major role for the homogeneity of refining as well as for the transfer and loading of fiber flocs in refining position on the bar edges. However, it is an area where very little information is available. In the present study, flow conditions in the grooves in a Low-Consistency (LC) - disc refiner were studied both experimentally and numerically. The experimental study involved high-speed imaging through a 3 cm peephole into a commercial refiner. The Computational Fluid Dynamics (CFD) simulation focused on the flow condition in a radial groove, considering both Newtonian and non-Newtonian flows. Flow conditions for stator and rotor grooves were modeled along the groove at different angular speeds and pressure differences over the refiner. Both the experimental and the modeling results show a dual flow pattern in the grooves; a rotational/spiral movement at the top of the groove and a flow in the direction of the groove at the bottom, which to the authors knowledge has not been reported in literature. The strong vortical motion at the top of the grooves observed both for the rotor and the stator are believed to be important for placing the fibers onto the bar edges and to induce shear forces in such a way that the fibers get treated. Moreover, a large sensitivity to suspension properties in terms of the development of flow pattern was detected.
Water with nitrate concentrations above 100 ppm has been treated with continuous electropermutation which partially substitutes the nitrate with chloride. The performance of a textile anion exchanger as conducting spacer in the feed compartment of an electropermutation cell was investigated. Experiments with and without textile are compared and the influence of the textile is discussed. The process could, using the textile, successfully treat feed water with 105 ppm nitrate to produce a water with less than 25 ppm nitrate. The importance of establishing a good contact between the membranes and the textile spacer was pointed out. The experimental results were compared to model predictions and a good agreement was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.