Axonal injury is an important contributor to the behavioral deficits observed following traumatic brain injury (TBI). Additionally, loss of myelin and/or oligodendrocytes can negatively influence signal transduction and axon integrity. Apoptotic oligodendrocytes, changes in the oligodendrocyte progenitor cell (OPC) population and loss of myelin were evaluated at 2, 7 and 21 days following TBI. We used the central fluid percussion injury model (n = 18 and three controls) and the lateral fluid percussion injury model (n = 15 and three controls). The external capsule, fimbriae and corpus callosum were analysed. With Luxol Fast Blue and RIP staining, myelin loss was observed in both models, in all evaluated regions and at all post-injury time points, as compared with sham-injured controls (P ≤ 0.05). Accumulation of β-amyloid precursor protein was observed in white matter tracts in both models in areas with preserved and reduced myelin staining. White matter microglial/macrophage activation, evaluated by isolectin B4 immunostaining, was marked at the early time points. In contrast, the glial scar, evaluated by glial fibrillary acidic protein staining, showed its highest intensity 21 days post-injury in both models. The number of apoptotic oligodendrocytes, detected by CC1/caspase-3 co-labeling, was increased in both models in all evaluated regions. Finally, the numbers of OPCs, evaluated with the markers Tcf4 and Olig2, were increased from day 2 (Olig2) or day 7 (Tcf4) post-injury (P ≤ 0.05). Our results indicate that TBI induces oligodendrocyte apoptosis and widespread myelin loss, followed by a concomitant increase in the number of OPCs. Prevention of myelin loss and oligodendrocyte death may represent novel therapeutic targets for TBI.
We investigated the role of the axon guidance molecule EphA4 following traumatic brain injury (TBI) in mice. Neutralization of EphA4 improved motor function and axonal regeneration following experimental spinal cord injury (SCI). We hypothesized that genetic absence of EphA4 could improve functional and histological outcome following TBI. Using qRT-PCR in wild-type (WT) mice, we evaluated the EphA4 mRNA levels following controlled cortical impact (CCI) TBI or sham injury and found it to be downregulated in the hippocampus (p<0.05) but not the cortex ipsilateral to the injury at 24 h post-injury. Next, we evaluated the behavioral and histological outcome following CCI using WT mice and Emx1-Cre-driven conditional knockout (cKO) mice. In cKO mice, EphA4 was completely absent in the hippocampus and markedly reduced in the cortical regions from embryonic day 16, which was confirmed using Western blot analysis. EphA4 cKO mice had similar learning and memory abilities at 3 weeks post-TBI compared to WT controls, although brain-injured animals performed worse than sham-injured controls (p<0.05). EphA4 cKO mice performed similarly to WT mice in the rotarod and cylinder tests of motor function up to 29 days post-injury. TBI increased cortical and hippocampal astrocytosis (GFAP immunohistochemistry, p<0.05) and hippocampal sprouting (Timm stain, p<0.05) and induced a marked loss of hemispheric tissue (p<0.05). EphA4 cKO did not alter the histological outcome. Although our results may argue against a beneficial role for EphA4 in the recovery process following TBI, further studies including post-injury pharmacological neutralization of EphA4 are needed to define the role for EphA4 following TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.