This study focuses on the radiative properties of five subtropical marine stratocumulus cloud regions, on monthly mean scale. Through examination of the relation between total albedo and cloud fraction, and its variability and relation to other parameters, some of the factors controlling the reflectivity, or albedo, of the clouds in these regions are investigated. It is found that the main part of the variability in albedo at a given cloud fraction can be related to temporal rather than spatial variability, indicating spatial homogeneity in cloud radiative properties in the studied regions. This is seen most clearly in satellite observations but also appears in an ensemble of climate models. Further comparison between satellite data and output from climate models shows that there is good agreement with respect to the role of liquid water path, the parameter that can be assumed to be the primary source of variability in cloud reflectivity for a given cloud fraction. On the other hand, the influence of aerosol loading on cloud albedo differs between models and observations. The cloud-albedo effect, or cloud brightening caused by aerosol through its coupling to cloud droplet number concentration and droplet size, is found not to dominate in the satellite observations on monthly mean scale, as it appears to do on this scale in the climate models. The disagreement between models and observations is particularly strong in regions with frequent occurrence of absorbing aerosols above clouds, where satellite data, in contrast to the climate models, indicate a scene darkening with increasing aerosol loading.
We study the relation between monthly mean albedo and cloud fraction over ocean, 60°S–60°N. Satellite observations indicate that these clouds all fall on the same near‐exponential curve, with a monotonic distribution over the ranges of cloud fractions and albedo. Using these observational data as a reference, we examine the degree to which 26 climate models capture this feature of the near‐global marine cloud population. Models show a general increase in albedo with increasing cloud fraction, but none of them display a relation that is as well defined as that characterizing the observations. Models typically display larger albedo variability at a given cloud fraction, larger sensitivity in albedo to changes in cloud fraction, and lower cloud fractions. Several models also show branched distributions, contrasting with the smooth observational relation. In the models the present‐day cloud scenes are more reflective than the preindustrial, demonstrating the simulated impact of anthropogenic aerosols on planetary albedo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.