Synchrotron radiation excited photoelectron spectra of the 4f emission region for all lanthanide metals Cess to Lu" (except Pm6') have been recorded. Photon energies ranging from 30 eV to 200 eV have been used to excite the 4f electrons with maximum surface sensitivity. The 4f emission spectra of all metals studied, with the exception of Ce, show 4f emission from the surface layer atoms and the bulk atoms as clearly separated structures with different binding energies. For Ce no unambiguous separation of the 4f structure into bulk and surface emission could be made. We fitted the experimental spectra with calculated 4f emission spectra obtained by adding a bulk and a shifted surface multiplet for each metal. The intensity ratios within the multiplets were obtained from an atomic calculation utilizing the intermediate coupling scheme.The intensity ratio between bulk and surface emission (I$ls) and the magnitude of the surface core level shift (SCS) were used as fit parameters. The deduced SCSs are all positive (towards higher binding energy), 0.40 eV-0.77 eV, and in fair agreement with calculated SCSs using the Johansson-Mktensson-Rosengren model. For the trivalent lanthanides we found a systematic variation of the SCSs through the series, which can be attributed to differences in the actual electron distribution between s, p and d-like valence states. For the trivalent Sm we found the surface to be completely divalent and deduced a surface shift of > 0.46 eV, being the energy necessary to change the surface valency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.