Brain ischemia was induced for 10 or 30 min by clamping the common carotid arteries in rabbits whose vertebral arteries had previously been electrocauterized. EEG and tissue content of high energy phosphates were used to verify the ischemic state and to evaluate the degree of postischemic recovery. Extracellular levels and total contents of amino acids were followed in the hippocampus during ischemia and 4 h of recirculation. At the end of a 30-min ischemic period, GABA had increased 250 times, glutamate 160 times, and aspartate and taurine 30 times in the extracellular phase. The levels returned to normal within 30 min of reflow. A delayed increase of extracellular phosphoethanolamine and ethanolamine peaked after 1–2 h of reflow. Ten minutes of ischemia elicited considerably smaller but similar effects. With respect to total amino acids in the hippocampus, glutamate and aspartate decreased to 30–50% of control while GABA appeared unaffected after 4 h of reflow. Alanine, valine, phenylalanine, leucine, and isoleucine increased severalfold. The importance of toxic extracellular levels of excitatory amino acids, as well as of high extracellular levels of inhibitory amino acids, are considered in relation to the pathophysiology of neuronal cell loss during cerebral ischemia.
The interstitial fluid of the human myocardium was monitored in 13 patients undergoing aortic valve and/or bypass surgery before, during, and after hypothermic potassium cardioplegia. The regulation of glucose and lactate was studied after sampling with microdialysis. The following questions were addressed. 1) Is the rate of transcapillary diffusion the limiting step for myocardial uptake of glucose before or after cardioplegia? 2) Does cold potassium cardioplegia induce a critical deprivation of glucose and/or accumulation of lactate in the myocardium? Before cardioplegia, interstitial glucose was ∼50% of the plasma level ( P < 0.001). Interstitial glucose decreased significantly immediately after induction of cardioplegia and remained low (1.25 ± 0.25 mM) throughout cardioplegia. It was restored to precardioplegic levels 1 h after release of the aortic clamp. Interstitial glucose then decreased again at 25 and 35 h postoperatively to the levels observed during cardioplegia. Interstitial lactate decreased immediately after induction of cardioplegia but returned to basal level during the clamping period. At 25 and 35 h, interstitial lactate was significantly lower than before and during cardioplegia. Glucose transport over the capillary endothelium is considered rate limiting for its uptake in the working heart but not during cold potassium cardioplegia despite the glucose deprivation following perfusion of glucose-free cardioplegic solution. Lactate accumulated during cardioplegia but never reached exceedingly high interstitial levels. We conclude that microdialysis provides information that may be relevant for myocardial protection during open-heart surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.