The Na(+)/K(+)-ATPase1 alpha subunit 3 (ATP1α(3)) is one of many essential components that maintain the sodium and potassium gradients across the plasma membrane in animal cells. Mutations in the ATP1A3 gene cause rapid-onset of dystonia parkinsonism (RDP), a rare movement disorder characterized by sudden onset of dystonic spasms and slowness of movement. To achieve a better understanding of the pathophysiology of the disease, we used immunohistochemical approaches to describe the regional and cellular distribution of ATP1α(3) in the adult mouse brain. Our results show that localization of ATP1α(3) is restricted to neurons, and it is expressed mostly in projections (fibers and punctuates), but cell body expression is also observed. We found high expression of ATP1α(3) in GABAergic neurons in all nuclei of the basal ganglia (striatum, globus pallidus, subthalamic nucleus, and substantia nigra), which is a key circuitry in the fine movement control. Several thalamic nuclei structures harboring connections to and from the cortex expressed high levels of the ATP1α(3) isoform. Other structures with high expression of ATP1α(3) included cerebellum, red nucleus, and several areas of the pons (reticulotegmental nucleus of pons). We also found high expression of ATP1α(3) in projections and cell bodies in hippocampus; most of these ATP1α(3)-positive cell bodies showed colocalization to GABAergic neurons. ATP1α(3) expression was not significant in the dopaminergic cells of substantia nigra. In conclusion, and based on our data, ATP1α(3) is widely expressed in neuronal populations but mainly in GABAergic neurons in areas and nuclei related to movement control, in agreement with RDP symptoms.
Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na+/K+-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2+/G301R) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2G301R/G301R E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2+/G301R male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2+/G301R behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2.
E.H.E. was supported by Health Faculty, Aarhus University and Kong Christian Den Tiendes Fond. K.H. and S.F. were supported by an MRC (UK) project grant MR/M012638/1. K.L.H. was supported by grants from Fonden til Lægevidenskabens Fremme, Kong Christian Den Tiendes Fond. K.L.H. and L.S. were supported by the IDEAS grant from Aarhus University Research Foundation (AUFF). There are no conflicts of interest.
The Na+/K+-ATPases maintain Na+ and K+ electrochemical gradients across the plasma membrane, a prerequisite for electrical excitability and secondary transport in neurons. Autosomal dominant mutations in the human ATP1A3 gene encoding the neuron-specific Na+/K+-ATPase α3 isoform cause different neurological diseases, including rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC) with overlapping symptoms, including hemiplegia, dystonia, ataxia, hyperactivity, epileptic seizures, and cognitive deficits. Position D801 in the α3 isoform is a mutational hotspot, with the D801N, D801E and D801V mutations causing AHC and the D801Y mutation causing RDP or mild AHC. Despite intensive research, mechanisms underlying these disorders remain largely unknown. To study the genotype-to-phenotype relationship, a heterozygous knock-in mouse harboring the D801Y mutation (α3+/D801Y) was generated. The α3+/D801Y mice displayed hyperactivity, increased sensitivity to chemically induced epileptic seizures and cognitive deficits. Interestingly, no change in the excitability of CA1 pyramidal neurons in the α3+/D801Y mice was observed. The cognitive deficits were rescued by administration of the benzodiazepine, clonazepam, a GABA positive allosteric modulator. Our findings reveal the functional significance of the Na+/K+-ATPase α3 isoform in the control of spatial learning and memory and suggest a link to GABA transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.