The bacterial stringent response serves as a paradigm for understanding global regulatory processes. It can be triggered by nutrient downshifts or starvation and is characterized by a rapid RelA-dependent increase in the alarmone (p)ppGpp. One hallmark of the response is the switch from maximum-growth-promoting to biosynthesis-related gene expression. However, the global transcription patterns accompanying the stringent response in Escherichia coli have not been analyzed comprehensively. Here, we present a time series of gene expression profiles for two serine hydroxymate-treated cultures: (i) MG1655, a wild-type E. coli K-12 strain, and (ii) an isogenic relA⌬251 derivative defective in the stringent response. The stringent response in MG1655 develops in a hierarchical manner, ultimately involving almost 500 differentially expressed genes, while the relA⌬251 mutant response is both delayed and limited in scope. We show that in addition to the downregulation of stable RNA-encoding genes, flagellar and chemotaxis gene expression is also under stringent control. Reduced transcription of these systems, as well as metabolic and transporter-encoding genes, constitutes much of the down-regulated expression pattern. Conversely, a significantly larger number of genes are up-regulated. Under the conditions used, induction of amino acid biosynthetic genes is limited to the leader sequences of attenuator-regulated operons. Instead, up-regulated genes with known functions, including both regulators (e.g., rpoE, rpoH, and rpoS) and effectors, are largely involved in stress responses. However, one-half of the up-regulated genes have unknown functions. How these results are correlated with the various effects of (p)ppGpp (in particular, RNA polymerase redistribution) is discussed.
SummaryThe stringent starvation protein A (SspA) is a RNA polymerase-associated protein and is required for transcriptional activation of bacteriophage P1 late promoters. However, the role of SspA in gene expression in Escherichia coli is essentially unknown. In this work, we show that SspA is essential for cell survival during acid-induced stress. Apparently, SspA inhibits stationary-phase accumulation of H-NS, a global regulator which functions mostly as a repressor, thereby derepressing multiple stress defence systems including those for acid stress and nutrient starvation. Consequently, the gene expression pattern of the H-NS regulon is altered in the sspA mutant, leading to acid-sensitive and hypermotile phenotypes. Thus, our study indicates that SspA is a global regulator, which acts upstream of H-NS, and thereby plays an important role in the stress response of E. coli during stationary phase. In addition, our results indicate that the expression of the H-NS regulon is sensitive to small changes in the cellular level of H-NS, enabling the cell to response rapidly to environment cues. As SspA and H-NS are highly conserved among Gram-negative bacteria, of which many are pathogenic, the global role of SspA in the stress response and pathogenesis is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.