For the optimisation of the annealing process of aluminium coils, simulation of the process is often performed. To simulate the process with higher accuracy, reliable input parameters are required, and thermal conductivity (thermal contact conductance) is one of them. In the present study, a method to measure the thermal conductivity and thermal contact conductance of metallic sheets were developed based on the steady-state comparative longitudinal heat flow. The apparatus was built with a compression test machine, and thus it allows to control the pressure to the sample and carry out the measurements at different contact pressure. An equipped heater allows to heat the sample to 573 K. To evaluate the thermal conductance at the interface, a thermal resistance network model was applied. The measurements were carried out with an aluminium alloy (AA3003 sheets). In addition to the thermal contact conductance measurements, the surface roughness of the sheets was also investigated. The semi-empirical equation for the relationship between thermal contact conductance and contact pressure was obtained based on the measurement results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.