Anthocyanins are widely distributed, glycosylated, water-soluble plant pigments, which give many fruits and flowers their red, purple or blue colouration. Their beneficial effects in a dietary context have encouraged increasing use of anthocyanins as natural colourants in the food and cosmetic industries. However, the limited availability and diversity of anthocyanins commercially have initiated searches for alternative sources of these natural colourants. In plants, high-level production of secondary metabolites, such as anthocyanins, can be achieved by engineering of regulatory genes as well as genes encoding biosynthetic enzymes. We have used tobacco lines which constitutively produce high levels of cyanidin 3-O-rutinoside, delphinidin 3-O-rutinoside or a novel anthocyanin, acylated cyanidin 3-O-(coumaroyl) rutinoside to generate cell suspension cultures. The cell lines are stable in their production rates and superior to conventional plant cell cultures. Scale-up of anthocyanin production in small scale fermenters has been demonstrated. The cell cultures have also proven to be a suitable system for production of 13C-labelled anthocyanins. Our method for anthocyanin production is transferable to other plant species, such as Arabidopsis thaliana, demonstrating the potential of this approach for making a wide range of highly-decorated anthocyanins. The tobacco cell cultures represent a customisable and sustainable alternative to conventional anthocyanin production platforms and have considerable potential for use in industrial and medical applications of anthocyanins.
Last decade’s advances in biotechnology, with the introduction of CRISPR, have challenged the regulatory framework for competent authorities all over the world. Hence, regulatory issues related to gene editing are currently high on the agenda both in the EU and in the European Economic Area (EEA) Agreement country of Norway, particularly with regards to sustainable agriculture. During the negotiations on the EEA Agreement, Norway was allowed to retain three extra aims in the Gene Technology Act: “That the production and use of GMO happens in an ethical way, is beneficial to society and is in accordance with the principle of sustainable development”. We argue the case that taking sustainability into the decisions on regulating gene edited products could be easier in Norway than in the EU because of these extra aims. Late blight is our chosen example, as a devastating disease in potato that is controlled in Norway primarily by high levels of fungicide use. Also, many of these fungicides are being banned due to negative environmental and health effects. The costs of controlling late blight in Norway were calculated in 2006, and since then there have been new cultivars developed, inflation and an outbreak of war in Europe increasing farm input costs. A genetically modified (GM) cisgenic late blight resistant (LBR) potato presents a possible solution that could reduce fungicide use, but this could still be controversial. This paper aims to discuss the advantages and disadvantages of approving the commercial use of a GM LBR potato cultivar in Norway and compare these against currently used late blight management methods and conventional potato resistance breeding. We argue that a possible route for future regulatory framework could build upon the proposal by the Norwegian Biotechnology Advisory Board from 2019, also taking sustainability goals into account. This could favour a positive response from the Competent Authorities without breeching the European Economic Area (EEA) Agreement. Perhaps the EU could adopt a similar approach to fulfil their obligations towards a more sustainable agriculture?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.