Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections and is the leading cause of infant hospitalizations. Recently, a promising vaccine antigen based on the RSV fusion protein (RSV F) stabilized in the native prefusion conformation has been described. Here we report alternative strategies to arrest RSV F in the prefusion conformation based on the prevention of hinge movements in the first refolding region and the elimination of proteolytic exposure of the fusion peptide. A limited number of unique mutations are identified that stabilize the prefusion conformation of RSV F and dramatically increase expression levels. This highly stable prefusion RSV F elicits neutralizing antibodies in cotton rats and induces complete protection against viral challenge. Moreover, the structural and biochemical analysis of the prefusion variants suggests a function for p27, the excised segment that precedes the fusion peptide in the polypeptide chain.
The complement system is an important immune mechanism mediating both recognition and elimination of foreign bodies. The lectin pathway is one pathway of three by which the complement system is activated. The characteristic protease of this pathway is Mannan-binding lectin (MBL)-associated serine protease 2 (MASP2), which cleaves complement proteins C2 and C4. We present a novel and alternative role of MASP2 in the innate immune system. We have shown that MASP2 is capable of promoting fibrinogen turnover by cleavage of prothrombin, generating thrombin. By using a truncated active form of MASP2 as well as full-length MASP2 in complex with MBL, we have shown that the thrombin generated is active and can cleave both factor XIII and fibrinogen, forming cross-linked fibrin. To explore the biological significance of these findings we showed that fibrin was covalently bound on a bacterial surface to which MBL/MASP2 complexes were bound. These findings suggest that, as has been proposed for invertebrates, limited clotting may contribute to the innate immune response.
Mannan-binding lectin (MBL), L-ficolin, and H-ficolin are pattern recognition molecules of the innate immune system. We investigated their ability to bind to different serotypes and noncapsulated variants of two gram-positive bacterial species, Streptococcus pneumoniae and Staphylococcus aureus. MBL did not bind to capsulated S. aureus or capsulated S. pneumoniae but did bind to a noncapsulated S. aureus variant (Wood). L-ficolin bound to some capsulated S. aureus serotypes (serotypes 1, 8, 9, 11, and 12) and capsulated S. pneumoniae serotypes (11A, 11D, and 11F) but not to noncapsulated strains. H-ficolin did not bind to any of the S. pneumoniae and S. aureus serotypes included in this study but did bind to one strain of Aerococcus viridans. The concentrations of the three proteins in 97 plasma samples were estimated. The median concentrations were 0.8 g per ml for MBL, 3.3 g per ml for L-ficolin, and 18.4 g per ml for H-ficolin.
L-ficolin and H-ficolin are molecules of the innate immune system. Upon recognition of a suitable target they activate the complement system. The ligand recognition structure of ficolins is contained within a fibrinogen-like domain. We examined the selectivity of the ficolins through inhibiting the binding to bacteria or to beads coupled with N-acetylglucosamine. The binding of L-ficolin to Streptococcus pneumoniae 11F and the beads was inhibited by N-acetylated sugars and not by non-acetylated sugars. However, it was also inhibited by other acetylated compounds. Based on this selectivity L-ficolin is not easily defined as a lectin. The binding of H-ficolin to Aerococcus viridans was not inhibited by any of the sugars or other compounds examined. Based on the selectivity of L-ficolin we developed a new purification procedure involving affinity chromatography on N-acetylcysteine-derivatized Sepharose. The column was loaded in the presence of EDTA and high salt, and L-ficolin was eluted by decreasing the salt concentration. Further purification was achieved by ion exchange chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.