We recently described a novel protein in bone marrow of rats, RP59, as a marker for cells with the capacity to differentiate into osteoblasts. In this work, its expression pattern was further investigated to learn about the origin and biological relevance of RP59 expressing marrow cells. As revealed by in situ hybridization and by immunohistochemistry of yolk sac embryos, RP59 was found in the cells of the primitive ectoderm and primitive streak as well as in blood islands and extraembryonal mesoderm. Later, RP59 occurred in fetal liver cells and in circulating blood. From the time around birth, it was found in bone marrow and spleen cells. In addition, in vitro-formed blood vessels contained RP59-positive cells in the lumen. Endothelial cells and the vast majority of cells outside the blood vessels were not labeled. Concerning more mature hematopoietic cell types, RP59 was observed in megakaryocytes and nucleated erythroblasts, but absent from lymphoid cells. In conclusion, RP59 was induced in early mesoderm. It was maintained in the erythroid and megakaryotic lineages and, as earlier described, in young osteoblasts.
We have recently identified a protein, RP59, in bone marrow cells and young osteoblasts, in cells involved in bone repair and in young erythroblasts and megakaryocytes. Here, we report immunohistochemical data at the light- and electron-microscope level indicating that RP59 is also present in newly secreted tooth enamel of the rat and in ameloblasts, the formative cells. In enamel matrix, RP59 was located proximal to secretory ameloblasts only, i.e. in newly secreted material. Distal enamel and enamel in association with maturation stage ameloblasts were unlabelled. Secretory ameloblasts contained RP59 in the matrix-proximal region including Tomes' processes, post-secretory ameloblasts in the cell-matrix interface. Western blotting of proteins from tooth germs identified RP59 as a band at 90 kD, co-migrating with RP59 from bone marrow and spleen. Antisera versus a chemically synthesised RP59 peptide and versus a bacteria-synthesised protein fragment reacted in the same manner. In situ hybridisation of tooth tissue revealed RP59 RNA specifically in ameloblasts. The reverse transcription/polymerase chain reaction method identified tooth RNA coding for RP59. Sequence analysis indicated that RP59 RNA from tooth and marrow had the same sequence. An internal sequence motif was found in rat RP59 resembling a signal implicated in secretion of the chicken "engrailed" gene product. The findings indicate that RP59 is a genuine product of ameloblasts and that it is secreted in the course of enamel formation together with other matrix components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.