Fibroblast growth factor 23 (FGF23) secreted by osteocytes is a circulating factor essential for phosphate homeostasis. High plasma FGF23 levels are associated with cardiovascular complications and mortality. Increases of plasma FGF23 in uremia antedate high levels of phosphate, suggesting a disrupted feedback regulatory loop or an extra-skeletal source of this phosphatonin. Since induction of FGF23 expression in injured organs has been reported we decided to examine the regulation of FGF23 gene and protein expressions in the kidney and whether kidney-derived FGF23 contributes to the high plasma levels of FGF23 in uremia. FGF23 mRNA was not detected in normal kidneys, but was clearly demonstrated in injured kidneys, already after four hours in obstructive nephropathy and at 8 weeks in the remnant kidney of 5/6 nephrectomized rats. No renal extraction was found in uremic rats in contrast to normal rats. Removal of the remnant kidney had no effect on plasma FGF23 levels. Well-known regulators of FGF23 expression in bone, such as parathyroid hormone, calcitriol, and inhibition of the FGF receptor by PD173074, had no impact on kidney expression of FGF23. Thus, the only direct contribution of the injured kidney to circulating FGF23 levels in uremia appears to be reduced renal extraction of bone-derived FGF23. Kidney-derived FGF23 does not generate high plasma FGF23 levels in uremia and is regulated differently than the corresponding regulation of FGF23 gene expression in bone.
An association between lower bone mineral density (BMD) and presence of vascular calcification (VC) has been reported in several studies. Chronic kidney disease (CKD) causes detrimental disturbances in the mineral balance, bone turnover, and development of severe VC. Our group has previously demonstrated expression of Wnt inhibitors in calcified arteries of CKD rats. Therefore, we hypothesized that the CKD‐induced VC via this pathway signals to bone and induces bone loss. To address this novel hypothesis, we developed a new animal model using isogenic aorta transplantation (ATx). Severely calcified aortas from uremic rats were transplanted into healthy rats (uremic ATx). Transplantation of normal aortas into healthy rats (normal ATx) and age‐matched rats (control) served as control groups. Trabecular tissue mineral density, as measured by μCT, was significantly lower in uremic ATx rats compared with both control groups. Uremic ATx rats showed a significant upregulation of the mineralization inhibitors osteopontin and progressive ankylosis protein homolog in bone. In addition, we found significant changes in bone mRNA levels of several genes related to extracellular matrix, bone turnover, and Wnt signaling in uremic ATx rats, with no difference between normal ATx and control. The bone histomorphometry analysis showed significant lower osteoid area in uremic ATx compared with normal ATx along with a trend toward fewer osteoblasts as well as more osteoclasts in the erosion lacunae. Uremic ATx and normal ATx had similar trabecular number and thickness. The bone formation rate did not differ between the three groups. Plasma biochemistry, including sclerostin, kidney, and mineral parameters, were similar between all three groups. ex vivo cultures of aorta from uremic rats showed high secretion of the Wnt inhibitor sclerostin. In conclusion, the presence of VC lowers BMD, impairs bone metabolism, and affects several pathways in bone. The present results prove the existence of a vasculature to bone tissue cross‐talk. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.