Genetic evidence has previously suggested that a zinc metalloprotease is involved in the invasive mechanism of the fish pathogen Vibrno anguMlalum NB10. In this study, the metalloprotease gene was cloned and sequenced. The sequence encodes a polypeptide (611 amino acids) that contains a putative signal sequence followed by a large leader sequence and the mature protein (44.6 kDa). Since the purified protein has a molecular mass of 36 kDa instead of the predicted 44.6 kDa, the mature protein is most likely processed a third time. Comparative analyses of the protein sequence showed high homologies to other bacterial metailoproteases within the zinc-binding and active-site regions. The Vibrio cholrae hemagglutinin/protease and the Pseudomonas aeruginosa elastase were exceptions in that the homology extended throughout the entire putative preproprotein. A chromosomal metalioprotease mutant was made via the integration of foreign DNA into the protease gene. This mutant did not secrete the metalloprotease, as determined by sodium dodecyl sulfate (SDS)-polyacrylamide protein analysis and by growth on gelatin agar. Transcomplemention of the chromosomal mutation revived the secretion of the metalloprotease and its activity on gelatin agar. Interestingly, when supernatant proteins were analyzed by gelatin-SDS-polyacrylamide electrophoresis, two different proteases (75 and 30 kDa) were detected in the mutant strain but not in the transcomplemented strain or the wild-type strain.Moreover, fish infection studies were done, and implications for the role of the metalloprotease in the virulence mechanism of V. anguiilanrm are discussed.
An invasiveness-defective mutant of the fish-pathogenic bacterium Vibrio anguillarum was isolated. Compared with the wild type, this mutant had a 1,000-fold higher 50% lethal dose after inmersion infection of rainbow trout, Oncorhynchus mykiss, while after intraperitoneal infection, the mutant had only a 10-fold higher 50% lethal dose. In addition, the mutant showed a lower level of protease activity. Two forms of the protease (Pa and Pb) were found after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of nonheated samples. Pa was found predominantly in protease preparations of the wild type, while Pb was the predominant form in the mutant. Conversion of Pb to Pa was observed in protease preparations after incubation at 4°C. Characterization of the protease showed that it was an elastolytic enzyme which required Zn2+ for activity and Ca2+ for stability. The molecular mass of the protease was 36 kilodaltons. N-terminal amino acid sequence analysis of the protease of V. anguilarum revealed homology to the elastase of Pseudomonas aeruginosa and the
The characterisation of virulence factors of Francisella tularensis has been hampered by the lack of genetic system for the bacterium. In this study, a shuttle vector was constructed that can replicate autonomously in F. tularensis and Escherichia coli. To obtain this vector, the p15A replication origin of F. coli plasmid pACYC184 was introduced into a plasmid derivative of plasmid pFNL2OO, a plasmid which only can replicate in F. tularensis. The resulting shuttle vector, designated pKK2O2, harboured resistance genes for chloramphenicol and tetracycline. This vector might be used as a basis for the studies of virulence factors of F. tularensis.
The fish pathogen Vibrio anguillarum causes a lethal infection in rainbow trout (Salmo gairdneri). Three different avirulent mutants, constructed by transposon insertion mutagenesis (VAN20 and VAN70) or as antibiotic-resistant mutants (VAN1000), were isolated by screening 200 individual isolated mutants for avirulence. When used as live vaccines, all three avirulent mutants were able to induce protective immunity against the homologous as well as a heterologous strain of V. anguillarum. When VAN1000 was used, protective immunity could be recorded 1 week after bath vaccination with 107 bacteria per ml of water for 30 min. A single-dose immunization was effective for at least 12 weeks. Western immunoblotting showed that strains of V. anguillarum have antigenic determinants in common with Aeromonas strains. Therefore, we tested and confirmed that VAN1000 also was able to induce protective immunity against challenge with Aeromonas salmonicida.
The fish pathogenic bacterium Vibrio anguilarum 775.17B was mutated by the use of transposon Tn5-132. Two hundred independent exconjugants were isolated and screened for a reduction ofvirulence in experimental infections of rainbow trout (Onchorhynchus mykiss). Two of these exconjugants, VAN20 and VAN70, showed a significant reduction in virulence after both intraperitoneal and immersion infections. The avirulent mutants showed no loss of any previously suggested virulence determinants of V. anguillarum. One of the mutants (VAN70) was further characterized. DNA sequence analysis revealed two open reading frames, the gene into which TnS-132 had been inserted (virA) and a closely linked upstream gene (virB). A virB mutant of 775.17B, NQ706, was isolated and also shown to be avirulent. The deduced amino acid sequences of virA and virB correspond to proteins with molecular weights of 36,000 and 42,000, respectively. Insertional mutagenesis of the corresponding virA and virB genes of a clinical isolate of V. anguiUarum, serotype 01, also resulted in avirulence. In immunoblot experiments, the total cell lysates ofVAN70 (virA) and NQ706 (virB) did not respond to a rabbit polyclonal antiserum directed against whole cells of 775.17B (wild type). This suggests that virA and virB are involved in the biosynthesis of a major surface antigen important for the virulence of V. anguillarum. Immunogold electron microscopy showed that a constituent of the flagellar sheath was expressed by 775.17B
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.