Enzymes are efficient catalysts in synthetic chemistry, and their catalytic activity with unnatural substrates in organic reaction media is an area attracting much attention. Protein engineering has opened the possibility to change the reaction specificity of enzymes and allow for new reactions to take place in their active sites. We have used this strategy on the well-studied active-site scaffold offered by the serine hydrolase Candida antarctica lipase B (CALB, EC 3.1.1.3) to achieve catalytic activity for aldol reactions. The catalytic reaction was studied in detail by means of quantum chemical calculations in model systems. The predictions from the quantum chemical calculations were then challenged by experiments. Consequently, Ser105 in CALB was targeted by site-directed mutagenesis to create enzyme variants lacking the nucleophilic feature of the active site. The experiments clearly showed an increased reaction rate when the aldol reaction was catalyzed by the mutant enzymes as compared to the wild-type lipase. We expect that the new catalytic activity, harbored in the stable protein scaffold of the lipase, will allow aldol additions of substrates, which cannot be reached by traditional aldolases.
Abstract:The alkane monooxygenase AlkBGT from Pseudomonas putida GPo1 constitutes a versatile enzyme system for the w-oxyfunctionalization of medium chain-length alkanes. In this study, recombinant Escherichia coli W3110 expressing alkBGT was investigated as whole-cell catalyst for the regioselective biooxidation of fatty acid methyl esters to terminal alcohols. The w-functionalized products are of general economic interest, serving as building blocks for polymer synthesis. The whole-cell catalysts proved to functionalize fatty acid methyl esters with a medium length alkyl chain specifically at the w-position. The highest specific hydroxylation activity of 104 U g CDW
À1was obtained with nonanoic acid methyl ester as substrate using resting cells of E. coli W3110 (pBT10). In an optimized set-up, maximal 9-hydroxynonanoic acid methyl ester yields of 95% were achieved. For this specific substrate, apparent whole-cell kinetic parameters were determined with a V max of 204 AE 9 Ug CDW À1 , a substrate uptake constant (K S ) of 142 AE 17 mM, and a specificity constant V max /K S of 1.4 U g CDW À1 mm À1 for the formation of the terminal alcohol. The same E. coli strain carrying additional alk genes showed a different substrate selectivity. A comparison of biocatalysis with whole cells and enriched enzyme preparations showed that both substrate availability and enzyme specificity control the efficiency of the whole-cell bioconversion of the longer and more hydrophobic substrate dodecanoic acid methyl ester. The efficient coupling of redox cofactor oxidation and product formation, as determined in vitro, combined with the high in vivo activities make E. coli W3110 (pBT10) a promising biocatalyst for the preparative synthesis of terminally functionalized fatty acid methyl esters.
Higher activity with larger pockets: The figure shows a superposition of intermediates that occur in acyl transfer to (S)‐1‐phenylethanol catalyzed by Candida antarctica lipase B (CALB). Wild‐type CALB cannot accomodate the phenyl group (gray) in the stereospecificity pocket and form all of the catalytically essential H bonds. The Trp 104 Ala mutation liberates the volume in yellow, the S enantiomer is easily fitted, and the specificity constant increases by a factor of 130 000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.