With increasing utilization of comprehensive genomic data to guide clinical care, anticipated to become the standard of care in many clinical settings, the practice of diagnostic medicine is undergoing a notable shift. However, the move from single-gene or panel-based genetic testing to exome and genome sequencing has not been matched by the development of tools to enable diagnosticians to interpret increasingly complex or uncertain genomic findings. Here, we present gene.iobio, a real-time, intuitive and interactive web application for clinically-driven variant interrogation and prioritization. We show gene.iobio is a novel and effective approach that significantly improves upon and reimagines existing methods. In a radical departure from existing methods that present variants and genomic data in text and table formats, gene.iobio provides an interactive, intuitive and visually-driven analysis environment. We demonstrate that adoption of gene.iobio in clinical and research settings empowers clinical care providers to interact directly with patient genomic data both for establishing clinical diagnoses and informing patient care, using sophisticated genomic analyses that previously were only accessible via complex command line tools.
With increasing utilization of comprehensive genomic data to guide clinical care, anticipated to become the standard of care in many clinical settings, the practice of diagnostic medicine is undergoing a notable shift. However, the move from single-gene or panel-based genetic testing to exome and genome sequencing has not been matched by the development of tools to enable diagnosticians to interpret increasingly complex genomic findings. A new paradigm has emerged, where genome-based tests are often evaluated by a large multi-disciplinary collaborative team, typically including a diagnostic pathologist, a bioinformatician, a genetic counselor, and often a subspeciality clinician. This team-based approach calls for new computational tools to allow every member of the clinical care provider team, at varying levels of genetic knowledge and diagnostic expertise, to quickly and easily analyze and interpret complex genomic data. Here, we present gene.iobio, a real-time, intuitive and interactive web application for clinically-driven variant interrogation and prioritization. We show gene.iobio is a novel and effective approach that significantly improves upon and reimagines existing methods. In a radical departure from existing methods that present variants and genomic data in text and table formats, gene.iobio provides an interactive, intuitive and visually-driven analysis environment. We demonstrate that adoption of gene.iobio in clinical and research settings empowers clinical care providers to interact directly with patient genomic data both for establishing clinical diagnoses and informing patient care, using sophisticated genomic analyses that previously were only accessible via complex command line tools.
With increasing utilization of comprehensive genomic data to guide clinical care, anticipated to become the standard of care in many clinical settings, the practice of diagnostic medicine is undergoing a notable shift. However, the move from single-gene or panel-based genetic testing to exome and genome sequencing has not been matched by the development of tools to enable diagnosticians to interpret increasingly complex or uncertain genomic findings. Here, we present gene.iobio, a real-time, intuitive and interactive web application for clinically-driven variant interrogation and prioritization. We show gene.iobio is a novel and effective approach that significantly improves upon and reimagines existing methods. In a radical departure from existing methods that present variants and genomic data in text and table formats, gene.iobio provides an interactive, intuitive and visually-driven analysis environment. We demonstrate that adoption of gene.iobio in clinical and research settings empowers clinical care providers to interact directly with patient genomic data both for establishing clinical diagnoses and informing patient care, using sophisticated genomic analyses that previously were only accessible via complex command line tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.