In the many developments of electrolyte equations of state presented over the past decades several different properties have been in focus. A property that has not been widely used as a fitting property is salt solubility. This work presents a new parameterization of the eCPA equation of State with salt specific parameters. The focus is on accurate description of the salt solubility, and low deviation correlations are obtained for all salts investigated. The inclusion of the solubility data in the parameterization has, compared to parameters only parameterized to osmotic coefficients and activity coefficients, not significantly affected the deviations of the osmotic coefficients and activity coefficients. The average deviations of the activity coefficient does increase slightly and it was found that the increase in deviations was almost entirely due to reduced accuracy at high temperature and high molality. The model is, furthermore, compared to the activity coefficient model, Extended UNIQUAC. It is shown that the eCPA provides more accurate solubility description at higher temperatures than Extended UNIQUAC, but also that Extended UNIQUAC is slightly better at describing the activity coefficients. Overall the two models perform similarly.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.