A closely-packed ultrawideband (UWB) multipleinput multiple-output (MIMO)/diversity antenna (of two elements) with a size of 25 mm by 40 mm is proposed for USB dongle applications. Wideband isolation can be achieved through the different patterns and polarizations of the two antenna elements. Moreover, the slot that is formed between the monopole and the ground plane of the half slot antenna is conveniently used to further enhance the isolation at the lower frequencies and to provide an additional resonance at one antenna element in order to increase its bandwidth. The underlying mechanisms of the antenna's wide impedance bandwidth and low mutual coupling are analyzed in detail. Based on the measurement results, the proposed antenna can cover the lower UWB band of 3.1-5.15 GHz, and within the required band, the isolation exceeds 26 dB. The gains and total efficiencies of the two antenna elements are also measured. Furthermore, a chassis mode can be excited when a physical connection is required between the ground planes of the two antenna elements. Without affecting the performance of the half slot element, the monopole can now cover the band of 1.78-3 GHz, apart from the UWB band. The proposed antenna structure is found to provide good MIMO/diversity performance, with very low envelope correlation of less than 0.1 across the UWB band.Index Terms-Multiple-input multiple-output (MIMO), mutual coupling, pattern diversity, polarization diversity, ultrawideband (UWB) antenna.
The ESS Design: Accelerator 6The ESS Design: Target 66The ESS Design: Controls 93The ESS Design: Conventional Facilities 109Physica ScriptaPhys. Scr. 93 (2018) 014001 (121pp) https://doi.org/10. 1088/1402-4896/aa9bff This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercialNoDerivs 3.0 licence. Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercialNoDerivs 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Neutron scattering is a well-developed and extensively used means to get access to fundamental properties of biological matter as well as of physical materials. Until the end of the twentieth century that was mainly practiced with-and limited in performance by-the continuous flux of neutrons from ageing nuclear reactors (e.g. the Institut Laue-Langevin (ILL), the flagship of neutron research in Europe and in the world) [1]). Looking forward to the following two decades, an OECD report published in 1998 diagnosed the foreseeable decrease of the number of operational facilities [2] and the need to progress in performance. Considering the high scientific interest and the increasing importance of the subject for society at large, the report concluded by strongly recommending the construction of next generation neutron sources in America, Europe and Asia. Pulsed spallation neutron sources (SNS) using a proton beam power exceeding 1 MW were specifically mentioned as the most interesting high performance facilities in the future landscape of neutron laboratories.The USA was the first country to follow this advice by building the SNS in the Oak Ridge National Laboratory (ORNL) which started in 2006 [3, 4]. Japan followed in 2009 with the Japan Proton Accelerator Research Centre (J-PARC) in Tokai [5,6]. In Europe, the subject was part of a concerted effort to further develop the European world-leading largescale research infrastructures suite. In 2003, the European Strategy Forum for Research Infrastructures (ESFRI), set up by the Research Ministries of the Member States and associated countries, concluded that a 5 MW long-pulse, single target station layout with nominally 22 'public' instruments was the optimum technical reference design for an European Spallation Source (ESS) that would meet the needs of the European science community in the second quarter of the century [7].Six years later, in 2009, it materialised in a real project with the adoption of the site of Lund (Sweden). A preconstruction phase followed until the end of 2013 during which the design was finalised [8]. Construction then started with the first neutron beams planned to be available in 2019, and the ESS facility to be operational at full performance in 2025.2 Description 2.1 Principle and specifics. The high level parameters of ESS are shown in table 1. As at SNS and J-PARC, neutrons at ESS are produced by spallation, when the 2 GeV protons hit the meta...
Abstract. Emission spectroscopy has been utilized to provide information about the electron density and temperature in streamers and breakdown arcs in transformer oil. Recorded spectra include strongly broadened hydrogen Balmer-α lines and vibration/rotation band profiles of the C 2 molecule. The origin of the observed broadening of hydrogen lines is discussed and it is concluded that it arises mainly from collisions with charged particles, so-called dynamic Stark broadening. By assuming that the broadening is due solely to dynamic Stark broadening, electron densities between 1 × 10 18 and 1 × 10 19 cm −3 were obtained for the rear of positive streamer filaments during the later stages of propagation. For negative streamers we obtained an upper limit of 3 × 10 16 cm −3 and for breakdown arcs electron densities up to 4 × 10 18 cm −3 . The temperature information in the C 2 emission profiles and the intensity ratio of the hydrogen Balmer lines are discussed. Rough estimations of the temperature are presented both for positive and for negative streamers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.