General lighting is undergoing a revolutionary change towards LED-based technologies. To provide firm scientific basis for the related colorimetric and photometric measurements, this paper presents the development of new white-LED-based illuminants for colorimetry, and their evaluation to recommend a new reference spectrum for calibration of photometers. Spectra of 1516 LED products were measured and used to calculate eight representative spectral power distributions for LED sources of different correlated colour temperature categories. The suitability of the calculated representative spectra for photometer calibration was studied by comparing average spectral mismatch errors with CIE Standard Illuminant A, which has been used for decades as the reference spectrum for incandescent standard lamps in calibration of photometers. It was found that in general, when compared with Standard Illuminant A, all the potential LED calibration spectra reduced spectral mismatch errors when measuring LED products. Out of the potential LED calibration spectra tested, the white LED spectrum with correlated colour temperature of 4103 K was found to be the most suitable candidate to complement Standard Illuminant A in luminous responsivity calibrations of photometers. When compared with Standard Illuminant A, employing the 4103 K reference spectrum reduced the spectral mismatch errors, on average, by approximately a factor of two in measurements of LED products and lighting. Furthermore, the new LED reference spectrum was found to reduce the spectral mismatch errors in measurements of daylight, and many types of fluorescent and discharge lamps, indicating that the proposed reference spectrum is a viable alternative to Standard Illuminant A for calibration of photometers.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A significant obstacle in the development of phosphor-converted white-laser diodes (pc-wLDs) is associated with the laser-induced luminescence saturation of phosphors. YAG:Ce is a canonical yellow-emitting phosphor. However, there has been no few systematic research of measurement and understanding of the luminescence saturation in YAG:Ce yet. Here, we analyze the luminescence saturation of a single-crystal YAG:Ce with a unique phosphor geometry. A novel characterization method, which enables the optical signals to be fully collected and analyzed, is introduced. The effects of both laser power and laser power density on the luminescence properties and colorimetric properties of the YAG:Ce are studied systematically. The results show that a single-crystal YAG:Ce has a high saturation threshold (over 360 W/mm 2 ) so that only a very slight saturation behavior can be observed at a high power density. Furthermore, a pc-wLDs light source based on the combination of a single laser diode and a YAG:Ce phosphor exhibits remarkable efficiency and stability. Under the excitation of a 3.38 W blue laser (~100 W/mm 2 ), the white light emission with the luminous flux of 465 lm, the luminous 2 / 23 efficacy (LE) of 145 lm/W, and the correlated color temperature (CCT) of 4980 K can be achieved.
Unlike satellite earth observation, multispectral images acquired by Unmanned Aerial Systems (UAS) provide great opportunities to monitor land surface conditions also in cloudy or overcast weather conditions. This is especially relevant for high latitudes where overcast and cloudy days are common. However, multispectral imagery acquired by miniaturized UAS sensors under such conditions tend to present low brightness and dynamic ranges, and high noise levels. Additionally, cloud shadows over space (within one image) and time (across images) are frequent in UAS imagery collected under variable irradiance and result in sensor radiance changes unrelated to the biophysical dynamics at the surface. To exploit the potential of UAS for vegetation mapping, this study proposes methods to obtain robust and repeatable reflectance time series under variable and low irradiance conditions. To improve sensor sensitivity to low irradiance, a radiometric pixel-wise calibration was conducted with a six-channel multispectral camera (mini-MCA6, Tetracam) using an integrating sphere simulating the varying low illumination typical of outdoor conditions at 55 o N latitude. The sensor sensitivity was increased by using individual settings for independent channels, obtaining higher signal-to-noise ratios compared to the uniform setting for all image channels. To remove cloud shadows, a multivariate statistical procedure, Tucker tensor decomposition, was applied to reconstruct images using a four-way factorization scheme that takes advantage of spatial, spectral and temporal information simultaneously. The comparison between reconstructed (with Tucker) and original images showed an improvement in cloud shadow removal. Outdoor vicarious reflectance validation showed that with these methods, the multispectral imagery can provide reliable reflectance at sunny conditions with root mean square deviations of around 3%. The proposed methods could be useful for operational multispectral mapping with UAS under low and variable irradiance weather conditions as those prevalent in northern latitudes.
In this work we investigate and present preliminary results for two methods for luminescence imaging of photovoltaic (PV) modules in outdoor conditions, with the aim of choosing the most suitable method for implementation on a drone PV plant inspection system. We examined experimentally both electroluminescence (EL) and photoluminescence (PL) PV module imaging methods under natural light conditions, and determined that fast pulsed EL imaging with InGaAs detector cameras can yield reasonably accurate results under daylight conditions. Moreover, we formulated the necessary requirement for a PL light source, which would allow PL imaging of modules under daylight conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.