Understandings on soot formation and evolution in pressurized flames are of significant interest due to the increasing operating pressures in different combustors and the accompanying increased soot emissions. In this study, a series of pressurized turbulent sooting flames at 1 bar, 3 bar and 5 bar, are simulated to study the pressure effect on the soot formation and evolution. The inflow conditions are chosen such that the Reynolds number at different pressures keeps constant. Via a Radiation Flamelet Progress Variable (RFPV) approach with a conditional soot sub-filter Probability Density Function (PDF) to consider the turbulence-chemistry-soot interaction, quantitatively good agreements (e.g., maximum discrepancy within one order of magnitude) are achieved for soot volume fraction predictions compared with the experimental data at different pressures. Soot volume fraction source terms are then discussed to show the pressure effect on nucleaion, condensation, surface growth and oxidation at different axial positions in these flames.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.