The cytochrome P450-dependent reduction of Cr(VI) using reconstituted phospholipid vesicles containing purified preparation of various forms of rabbit and rat liver microsomal cytochrome P450 has been investigated. The alcohol-induced form of the rat, P450IIE1, was the most efficient enzyme, 7.2 +/- 0.40 nmol Cr/nmol P450/min, whereas the corresponding rates for rat P450IA1, rat IIB1, rabbit IIB4, rabbit IA2 and rabbit IIE1 were 1.7 +/- 0.09, 2.5 +/- 0.08, 1.6 +/- 0.08, 2.5 +/- 0.15 and 1.6 +/- 0.08 nmol Cr/nmol P450/min respectively. NADPH-cytochrome P450 reductase had Cr(VI) reductase activity which was dependent on enzyme concentration. Below 0.15 nmol P450 reductase/ml the sp. act. was low and constant, while at a higher concentration the activity was markedly dependent upon the amount of enzyme present. In a quantitative binding assay it was shown that binding of [51Cr]Cr(VI) to the catalytic enzymes was proportional to the enzyme concentration up to 0.8 nmol P450/ml, which caused binding of 70% of the total radioactivity. Analysis by SDS-PAGE and autoradiography exhibited binding to the individual catalytic proteins of [51Cr]Cr. EDTA treatment removed the radioactivity from the bands matching P450 and P450 reductase, indicating that Cr(III) is bound to the proteins. The reducing activity of both P450 and P450 reductase was potently inhibited by oxygen. The inhibitory effect of oxygen is not due to reoxidation of the reduced Cr and redox cycling. Rat P450IA1 ethoxycoumarin O deethylase activity was inhibited after preincubation with chromate (CrO4(2-). The P450 reductase inhibitor 2'-AMP stimulated the anaerobic P450 reductase dependent Cr(VI) reductase rate approximately 2-fold. Both CO and CCl4 inhibited the different P450 enzymes to various extents. With rabbit P450IIE1 CCl4 stimulated the Cr(VI) reduction approximately 4-fold, whereas the activity of the other enzymes was inhibited when the reconstituted system was incubated with CrO4(2-) and CCl4 prior to NADPH addition. Neither CO nor CCl4 affected the Cr(VI) reducing activity of the P450 reductase. The difference in CrO4(2-) reducing activity of the P450 enzymes and binding to the enzymes may be important for in vivo endoplasmic catalytic metabolism of CrO4(2-).
Tetraplegia from spinal cord injury leaves many patients paralyzed below the neck, leaving them unable to perform most activities of daily living. Brain-machine interfaces (BMIs) could give tetraplegic patients more independence by directly utilizing brain signals to control external devices such as robotic arms or hands. The cortical grasp network has been of particular interest because of its potential to facilitate the restoration of dexterous object manipulation. However, a network that involves such high-level cortical areas may also provide additional information, such as the encoding of speech. Towards understanding the role of different brain areas in the human cortical grasp network, neural activity related to motor intentions for grasping and performing speech was recorded in a tetraplegic patient in the supramarginal gyrus (SMG), the ventral premotor cortex (PMv), and the somatosensory cortex (S1). We found that in high-level brain areas SMG and PMv, grasps were well represented by firing rates of neuronal populations already at visual cue presentation. During motor imagery, grasps could be significantly decoded from all brain areas. At identical neuronal population sizes, SMG and PMv achieved similar highly-significant decoding abilities, demonstrating their potential for grasp BMIs. During speech, SMG encoded both spoken grasps and colors, in contrast to PMv and S1, which were not able to significantly decode speech.These findings suggest that grasp signals can robustly be decoded at a single unit level from the cortical grasping circuit in human. Data from PMv suggests a specialized role in grasping, while SMG’s role is broader and extends to speech. Together, these results indicate that brain signals from high-level areas of the human cortex can be exploited for a variety of different BMI applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.