Computational systems tend to adopt parallel architectures, by using multiprocessor systems-on-chip (MPSoCs). MPSoCs are vulnerable to software and hardware attacks, as infected applications and Hardware Trojans respectively. These attacks may have the purpose to gain access to sensitive data, interrupt a given application or even damage the system physically. The literature presents countermeasures using dedicated routing algorithms, cryptography, firewalls and secure zones. These approaches present a significant hardware cost (firewalls, cryptography) or are too restrictive regarding the use of MPSoC resources (secure zones). The goal of this paper is to present lightweight security mechanisms for MPSoCs, using four techniques: spatial isolation of applications; dedicated network to send sensitive data; traffic blocking filter; lightweight cryptography. These mechanisms protect the MPSoC against the most common software attacks, as Denial of Service (DoS) and spoofing (man-in-the-middle), and ensures confidentiality and integrity to applications. Results present low area and latency overhead, as well as the effectiveness of using the mechanisms to block malicious traffic.
CCS CONCEPTS• Security and privacy → Hardware attacks and countermeasures;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.