Until now, interest in dental pulp stem/stromal cell (DPSC) research has centered on mineralization and tooth repair. Beginning a new paradigm in DPSC research, we grafted undifferentiated, untreated DPSCs into the hippocampus of immune-suppressed mice. The rhesus DPSC (rDPSC) line used was established from the dental pulp of rhesus macaques and found to be similar to human bone marrow/mesenchymal stem cells, which express Nanog, Rex-1, Oct-4, and various cell surface antigens, and have multi-potent differentiation capability. Implantation of rDPSCs into the hippocampus of mice stimulated proliferation of endogenous neural cells and resulted in the recruitment of pre-existing Nestin+ neural progenitor cells (NPCs) and β-tubulin-III+ mature neurons to the site of the graft. Additionally, many cells born during the first 7 days after implantation proliferated, forming NPCs and neurons, and, to a lesser extent, underwent astrogliosis, forming astrocytes and microglia, by 30 days after implantation. Although the DPSC graft itself was short term, it had long-term effects by promoting growth factor signaling. Implantation of DPSCs enhanced the expression of ciliary neurotrophic factor, vascular endothelial growth factor, and fibroblast growth factor for up to 30 days after implantation. In conclusion, grafting rDPSCs promotes proliferation, cell recruitment, and maturation of endogenous stem/progenitor cells by modulating the local microenvironment. Our results suggest that DPSCs have a valuable, unique therapeutic potential, specifically as a stimulator and modulator of the local repair response in the central nervous system. DPSCs would be a preferable cell source for therapy due to the possibility of a “personalized” stem cell, avoiding the problems associated with host immune rejection.
SummaryHuntington’s disease (HD) is a dominant neurodegenerative disorder caused by the expansion of glutamine residues in the N-terminal region of the huntingtin (HTT) protein. The disease results in progressive neuronal loss, leading to motor, cognitive, and psychiatric impairment. Here, we report the establishment of neural progenitor cell (NPC) lines derived from induced pluripotent stem cells (iPSCs) of transgenic HD monkeys. Upon differentiation to neurons, HD neural cells develop cellular features of HD, including the formation of nuclear inclusions and oligomeric mutant HTT (mHTT) aggregates, as well as increased apoptosis. These phenotypes are rescued by genetic suppression of HTT and pharmacological treatment, demonstrating the ability of our HD cell model to respond to therapeutic treatment. The development and reversal of HD-associated phenotypes in neural cells from HD monkeys provides a unique nonhuman primate (NHP) model for exploring HD pathogenesis and evaluating therapeutics that could be assessed further in HD monkeys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.