In the Foundations of Mathematics (1925), Ramsey attempted to amend Principia Mathematica's logicism to meet serious objections raised against it. While Ramsey's paper is well known, some questions concerning Ramsey's motivations to write it and its reception still remain. This paper considers these questions afresh. First, an account is provided for why Ramsey decided to work on his paper instead of simply accepting Wittgenstein's account of mathematics as presented in the Tractatus. Secondly, evidence is given supporting that Wittgenstein was not moved by Ramsey's objection against the Tractarian account of arithmetic, and a suggestion is made to explain why Wittgenstein reconsidered Ramsey's account in the early thirties on several occasions. Finally, a reading is formulated to understand the basis on which Wittgenstein argues against Ramsey's definition of identity in his 1927 letter to Ramsey.
Resumo O estudo do comportamento de fluidosé um antigo domínio das ciências da natureza. Ultimamente, fenômenos de engenharia que eram estudados empiricamente passaram a ser estudados com auxílio computacional. A Dinâmica de Fluidos Computacional (DFC) e aárea da ciência da computação que estuda métodos computacionais para simulação de escoamento de fluidos, e muitas vezesé a forma mais prática, ou aúnica, de se observar fenômenos de interesse no escoamento. Este projeto de Mestrado procurou investigar, noâmbito da simulação de um escoamento bifásico, métodos computacionais para representar a interface entre dois fluidos imiscíveis. A separação dos fluidos por meio de uma interfaceé necessária para assegurar que, propriedades como viscosidade e densidade, específicas de cada fluido, sejam utilizadas corretamente para o cálculo do movimento de seus respectivos fluidos. Desenvolvemos um método lagrangeano sem a utilização de malhas com o objetivo de suprir algumas restrições de trabalhos prévios. Para representar a interface entre os dois fluidos, este método utiliza uma técnica de reconstrução de superfícies baseada em aproximações de superfícies algébricas de alta ordem. Os resultados numéricos reportados neste documento evidenciam o potencial da nossa abordagem.
It is often held that Wittgenstein had to introduce numbers in elementary propositions due to problems related to the so-called colour-exclusion problem. I argue in this paper that he had other reasons for introducing them, reasons that arise from an investigation of the continuity of visual space and what Wittgenstein refers to as ‘intensional infinity’. In addition, I argue that the introduction of numbers by this route was prior to introducing them via the colour-exclusion problem. To conclude, I discuss two problems that Wittgenstein faced in the writings before Some Remarks on Logical Form (1929), problems that are independent of the colour-exclusion problem but dependent on the introduction of numbers in elementary propositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.