This paper deals with the identification of two-time scale linear dynamic systems, which are an important class of multiscale systems. Classical identification processes may fail to yield accurate parameters for systems of this class and, for this reason, the authors propose two different techniques to estimate the system parameters. The first technique utilizes two prefilters that are iteratively tuned. The second one considers wavelet filters that are tuned based on the results of the first iterative algorithm. Identification and analysis results for a dynamical aircraft model are shown to demonstrate the algorithm’s performance.
In sucker-rod pumping wells, due to the lack of an early diagnosis of operating condition or sensor faults, several problems can go unnoticed. These problems can increase downtime and production loss. In these wells, the diagnosis of operation conditions is carried out through downhole dynamometer cards, via pre-established patterns, with human visual effort in the operation centers. Starting with machine learning algorithms, several papers have been published on the subject, but it is still common to have doubts concerning the difficulty level of the dynamometer card classification task and best practices for solving the problem. In the search for answers to these questions, this work carried out sixty tests with more than 50,000 dynamometer cards from 38 wells in the Mossoró, RN, Brazil. In addition, it presented test results for three algorithms (decision tree, random forest and XGBoost), three descriptors (Fourier, wavelet and card load values), as well as pipelines provided by automated machine learning. Tests with and without the tuning of hypermeters, different levels of dataset balancing and various evaluation metrics were evaluated. The research shows that it is possible to detect sensor failures from dynamometer cards. Of the results that will be presented, 75% of the tests had an accuracy above 92% and the maximum accuracy was 99.84%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.