Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or β-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway.
During sepsis, brain damage is associated with oxidative stress due to overproduction of reactive oxygen species (ROS). Although there are recent reports about the benefits of statins in experimental sepsis and endotoxemia in peripheral organs, little is known about their effects in the CNS. Here, we investigated the antioxidant properties of simvastatin and its possible neuroprotective role during experimental sepsis. Male Wistar rats (250-300 g) were submitted to cecal ligation and puncture (CLP, n = 34) or remained as non-manipulated (naive, n = 34). Both groups were treated by gavage with simvastatin (20 mg/kg) or an equivalent volume of saline. The animals submitted to CLP were treated 4 days before and 48 h after surgery. One animal group was decapitated and the blood and brain were collected to quantify plasma levels of cytokines and assess astrogliosis and apoptosis in the prefrontal cortex and hippocampus. Another group was perfused with PBS (0.01 M), and the same brain structures were dissected to analyze oxidative damage. The CLP rats treated with simvastatin showed a reduction in nitric oxide (P < 0.05), IL1-β (P < 0.001), IL-6 (P < 0.01), and TBARS levels (P < 0.001) and an increase in catalase activity (P < 0.01), citrate synthase enzyme (P < 0.05), and normalized GSH/GSSG ratio. In addition, the histopathological analysis showed a reduction (P < 0.001) in reactive astrocytes and caspase 3-positive apoptotic cells. The results suggest a possible neuroprotective effect of simvastatin in structures responsible for spatial learning and memory and indicate the need for behavioral studies evaluating the impact on cognitive damage, as frequently seen in patients surviving sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.