Waste tire rubber (WTR) supplied by a truck tire retreader were processed in an intermeshing co-rotating twin-screw extruder (ICTSE). The extrusion process evaluated the efficiency of the thermomechanical recycling in the devulcanization of WTR rubbers. Samples were prepared by varying the process parameters, the particles sizes and thermoplastics, and the latter was used as devulcanization auxiliary agents. After extrusion, samples were subjected to solvent extraction to determine the soluble fraction (SF). Subsequently, these SF were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The highest SF (29 wt%) was obtained with higher screw rotating speed and with smaller particle size. Higher SF indicated a higher degree of devulcanization. The FTIR and DSC analyses showed that natural rubber was the main rubber extracted from extruded samples. In addition, polypropylene was more effective than low-density polyethylene in the devulcanization process, promoting higher SF.
In this study, the effects of the devulcanization process realized by an intermeshing co-rotating twin-screw extruder (ICTSE) on three vulcanized Natural Rubber (NR) composites with different crosslink densities (CD) have been investigated. The extrusion parameters were fixed, as well as the initial material granulometry and auxiliary thermoplastic added to the process. After composites vulcanization, they were characterized accordingly their soluble fraction (SF), crosslink density (CD), mechanical properties and thermogravimetry (TGA). The extrusion was performed on the vulcanized elastomers pursuing selectively crosslink rupture and the same characterization previously cited was conducted on the devulcanized material, except the mechanical properties analysis. The extrusion demonstrate effective devulcanization, evidenced in the increasing of soluble fractions, reduction in crosslink density and thermal stability gain. These results are directly affected by preliminary differences on materials structure and presence of ethylene vinyl-acetate (EVA) on extrusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.