Southeast Brazil is a neotropical region composed of a mosaic of different tropical habitats and mountain chains, which allowed for the formation of bird-rich communities with distinct ecological niches. Although this region has the potential to harbor a remarkable variety of avian parasites, there is a lack of information about the diversity of malarial parasites. We used molecular approaches to characterize the lineage diversity of Plasmodium and Haemoproteus in bird communities from three different habitats in southeast Brazil based on the prevalence, richness and composition of lineages. We observed an overall prevalence of 35.3%, with a local prevalence ranging from 17.2% to 54.8%. Moreover, no significant association between prevalence and habitat type could be verified (p>0.05). We identified 89 Plasmodium and 22 Haemoproteus lineages, with 86% of them described for the first time here, including an unusual infection of a non-columbiform host by a Haemoproteus (Haemoproteus) parasite. The composition analyses of the parasite communities showed that the lineage composition from Brazilian savannah and tropical dry forest was similar, but it was different from the lineage composition of Atlantic rainforest, reflecting the greater likeness of the former habitats with respect to seasonality and forest density. No significant effects of habitat type on lineage richness were observed based on GLM analyses. We also found that sites whose samples had a greater diversity of bird species showed a greater diversity of parasite lineages, providing evidence that areas with high bird richness also have high parasite richness. Our findings point to the importance of the neotropical region (southeast Brazil) as a major reservoir of new haemosporidian lineages.
One of the unresolved issues in the ecology of parasites is the relationship between host specificity and performance. Previous studies tested this relationship in different systems and obtained all possible outcomes. This led to the proposal of two hypotheses to explain conflicting results: the trade-off and resource breadth hypotheses, which are treated as mutually exclusive in the literature and were corroborated by different studies. In the present study, we used an extensive database on avian malaria from Brazil and combined analyses based on specificity indices and network theory, in order to test which of those hypotheses might best explain our model system. Contrary to our expectations, there was no correlation between specificity and prevalence, which contradicts both hypotheses. In addition, we detected a strong modular structure in our host-parasite network and found that its modules were not composed of geographically close, but of phylogenetically close, host species. Based on our results, we reached the conclusion that trade-off and resource breadth hypotheses are not really mutually exclusive. As a conceptual solution we propose "The Integrative Hypothesis of Parasite Specialization", a novel theoretical model that explains the contradictory results found in our study and reported to date in the literature.
BackgroundOne of the most important drawbacks in visceral leishmaniasis (VL) population studies is the difficulty of diagnosing asymptomatic carriers. The aim of this study, conducted in an urban area in the Southeast of Brazil, was to evaluate the performance of serology to identify asymptomatic VL infection in participants selected from a cohort with a two-year follow-up period.MethodologyBlood samples were collected in 2001 from 136 cohort participants (97 positive and 39 negatives, PCR/hybridization carried out in 1999). They were clinically evaluated and none had progressed to disease from their asymptomatic state. As controls, blood samples from 22 control individuals and 8 patients with kala-azar were collected. Two molecular biology techniques (reference tests) were performed: PCR with Leishmania-generic primer followed by hybridization using L. infantum probe, and PCR with specific primer to L. donovani complex. Plasma samples were tested by ELISA using three different antigens: L. infantum and L. amazonensis crude antigens, and rK39 recombinant protein. Accuracy of the serological tests was evaluated using sensitivity, specificity, likelihood ratio and ROC curve.FindingsThe presence of Leishmania was confirmed, by molecular techniques, in all kala-azar patients and in 117 (86%) of the 136 cohort participants. Kala-azar patients showed high reactivity in ELISAs, whereas asymptomatic individuals presented low reactivity against the antigens tested. When compared to molecular techniques, the L. amazonensis and L. infantum antigens showed higher sensitivity (49.6% and 41.0%, respectively) than rK39 (26.5%); however, the specificity of rK39 was higher (73.7%) than L. amazonensis (52.6%) and L. infantum antigens (36.8%). Moreover, there was low agreement among the different antigens used (kappa<0.10).ConclusionsSerological tests were inaccurate for diagnosing asymptomatic infections compared to molecular methods; this could lead to misclassification bias in population studies. Therefore, studies which have used serological assays to estimate prevalence, to evaluate intervention programs or to identify risk factors for Leishmania infection, may have had their results compromised.
Summary Parrots are one of the most distinct and intriguing group of birds, with highly expanded brains [1], highly developed cognitive [2] and vocal communication skills [3], and a long lifespan compared to other similar-sized birds [4]. Yet the genetic basis of these traits remains largely unidentified. To address this question, we have generated a high-coverage, annotated assembly of the genome of the Blue-fronted Amazon (Amazona aestiva), and carried out extensive comparative analyses with 30 other avian species, including 4 additional parrots. We identified several genomic features unique to parrots, including parrot-specific novel genes and parrot-specific modifications to coding and regulatory sequences of existing genes. We also discovered genomic features under strong selection in parrots and other long-lived birds, including genes previously associated with lifespan determination as well as several hundred new candidate genes. These genes support a range of cellular functions, including telomerase activity, DNA damage repair, control of cell proliferation, cancer, immunity, and anti-oxidative mechanisms. We also identified brain-expressed, parrot-specific paralogs with known functions in neural development or vocal learning brain circuits. Intriguingly, parrot-specific changes in conserved regulatory sequences were overwhelmingly associated with genes that are linked to cognitive abilities and have undergone similar selection in the human lineage, suggesting convergent evolution. These findings bring novel insights into the genetics and evolution of longevity and cognition, as well as provide novel targets for exploring the mechanistic basis of these traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.